$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\pi/2}\ln\pars{1 + 4\sin^{4}\pars{x}}\,\dd x
=\pi\ln\pars{\varphi + \raíz{\varphi} \over 2}:\ {\large ?}}$
\begin{align}&
\partiald{}{\mu}\int_{0}^{\pi/2}\ln\pars{1 + \mu\sin^{4}\pars{x}}\,\dd x
=\int_{0}^{\pi/2}{\sin^{4}\pars{x} \over 1 + \mu\sin^{4}\pars{x}}\,\dd x
\\[3mm]&={\pi \over 2\mu} -{1 \over \mu}\color{#c00000}{\int_{0}^{\pi/2}
{\dd x \over 1 + \mu\sin^{4}\pars{x}}}
\end{align}
\begin{align}&\color{#c00000}{\int_{0}^{\pi/2}%
{\dd x \over 1 + \mu\sin^{4}\pars{x}}}
=\int_{0}^{\pi/2}{\csc^{4}\pars{x} \over \csc^{4}\pars{x} + \mu}\,\dd x
=\ \overbrace{\int_{0}^{\pi/2}%
{\cot^{2}\pars{x} + 1 \over \bracks{\cot^{2}\pars{x} + 1}^{2}+ \mu}
\,\csc^{2}\pars{x}\,\dd x}^{\ds{\cot\pars{x} \equiv t}}
\\[3mm]&=-\int_{\infty}^{0}{t^{2} + 1 \over \pars{t^{2} + 1}^{2} + \mu}\,\dd t
=\Re\int_{0}^{\infty}{\dd t \over t^{2} + 1 + \root{\mu}\ic}
\\[3mm]&=\Re\bracks{{1 \over \root{1 + \root{\mu}{\ic}}}
\int_{0}^{\infty/\root{1 + \root{\mu}{\ic}}}{\dd t \over t^{2} + 1}}
={\pi \over 2}\,\Re\pars{{1 \over \root{1 + \root{\mu}{\ic}}}}
\end{align}
\begin{align}&\color{#66f}{%
\large\int_{0}^{\pi/2}\ln\pars{1 + 4\sin^{4}\pars{x}}\,\dd x}
={\pi \over 2}\,\Re\int_{0}^{4}\overbrace{%
{1 \over \mu}\pars{1 - {1 \over \root{1 + \root{\mu}\ic}}}\,\dd\mu}
^{\ds{t \equiv \root{1 + \root{\mu}\ic}}}
\\[3mm]&=2\pi\,\Re\int_{1}^{\root{1 + 2\,\ic}}{\dd t \over 1 + t}
=\color{#66f}{\large 2\pi\,\Re\ln\pars{1 + \root{1 + 2\ic} \over 2}}
\approx 1.1565078476153109133
\end{align}
Está de acuerdo con el OP propuesto respuesta
$\color{#000}{\large\quad\ds{\pi\,\ln\pars{\varphi + \root{\varphi} \over 2}}}$.