$A=\begin{pmatrix}1&1&1\\a&b&c\\a^2&b^2&c^2\end{pmatrix}$ $$\Rightarrow\det(A)=\begin{vmatrix}b&c\\b^2&c^2\end{vmatrix}-\begin{vmatrix}a&c\\a^2&c^2\end{vmatrix}+\begin{vmatrix}a&b\\a^2&b^2\end{vmatrix}\\=ab^2-a^2b-ac^2+a^2c+bc^2-b^2c\\=a^2(c-b)+b^2(a-c)+c^2(b-a).$$
Claramente, $$\left\{\det(A)\neq0\left|\begin{matrix}c\neq b\\a\neq c\\b\neq a\\a,b,c\neq 0\end{matrix}\right.\right\}\\$ $
¿Es suficiente decir que la matriz es inversible, siempre que se cumplan todas las 4 restricciones? ¿Rendimiento de regla de Cramer más explícita resulta $a,b,c$ tal que $\det(A)\neq0$?