$\newcommand{\+}{^{\dagger}}% \newcommand{\angles}[1]{\left\langle #1 \right\rangle}% \newcommand{\braces}[1]{\left\lbrace #1 \right\rbrace}% \newcommand{\bracks}[1]{\left\lbrack #1 \right\rbrack}% \newcommand{\ceil}[1]{\,\left\lceil #1 \right\rceil\,}% \newcommand{\dd}{{\rm d}}% \newcommand{\down}{\downarrow}% \newcommand{\ds}[1]{\displaystyle{#1}}% \newcommand{\equalby}[1]{{#1 \atop {= \atop \vphantom{\huge A}}}}% \newcommand{\expo}[1]{\,{\rm e}^{#1}\,}% \newcommand{\fermi}{\,{\rm f}}% \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,}% \newcommand{\half}{{1 \over 2}}% \newcommand{\ic}{{\rm i}}% \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow}% \newcommand{\isdiv}{\,\left.\right\vert\,}% \newcommand{\ket}[1]{\left\vert #1\right\rangle}% \newcommand{\ol}[1]{\overline{#1}}% \newcommand{\pars}[1]{\left( #1 \right)}% \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}}% \newcommand{\root}[2][]{\,\sqrt[#1]{\,#2\,}\,}% \newcommand{\sech}{\,{\rm sech}}% \newcommand{\sgn}{\,{\rm sgn}}% \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}}% \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$ \begin{align} &{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}} ={1 \over \bracks{\cos\pars{x} + \tan\pars{\pi/4}\sin\pars{x}} \bracks{1 - \sin\pars{2x}/2}} \\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\bracks{2 - \sin\pars{2x}}} ={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \sin\pars{2\bracks{x - \pi/4} + \pi/2}}} \\[3mm]&={\root{2} \over \cos\pars{x - \pi/4}\braces{2 - \cos\pars{2\bracks{x - \pi/4}}}} \end{align}
Con $t \equiv x - \pi/4$ : \begin{align} &{1 \over \bracks{\cos\pars{x} + \sin\pars{x}}\bracks{1 - \cos\pars{x}\sin\pars{x}}} ={\root{2} \over \cos\pars{t}\bracks{2 - \cos\pars{2t}}} ={\root{2} \over \cos\pars{t}\braces{2 - \bracks{2\cos^2\pars{t} - 1}}} \\[3mm]&={\root{2} \over \cos\pars{t}\bracks{3 - 2\cos^2\pars{t}}} ={\root{2} \over 2}\, {1 \over \cos\pars{t}\bracks{\root{3}/2 - \cos\pars{t}}\bracks{\root{3}/2 + \cos\pars{t}}} \\[3mm]&={\root{2} \over 2}\bracks{% {4/3\over \cos\pars{t}} + {3/2 \over \root{3}/2 - \cos\pars{t}} + {3/2 \over \root{3}/2 + \cos\pars{t}}} \\[3mm]&={2\root{2} \over 3}\,{1 \over \cos\pars{t}} +{3\root{2} \over 4}\bracks{% {1 \over \root{3}/2 - \cos\pars{t}} + {1 \over \root{3}/2 + \cos\pars{t}} } \end{align}
$$ \int{\dd t \over \cos\pars{t}}=\ln\pars{\sec\pars{t} + \tan\pars{t}} +\quad \mbox{a constant} $$
El resto de las integrales se pueden realizar fácilmente con $s \equiv \tan\pars{t/2}$ .