$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
Con $\ds{\verts{\mu} < {1 \over 4}}$:
\begin{align}
\color{#66f}{\large\sum_{n\ =\ 0}^{\infty}\mu^{n}{\pars{2n + 1}! \over \pars{n!}^{2}}}
&=\sum_{n\ =\ 0}^{\infty}\pars{2n + 1}\mu^{n}{2n \choose n}
=\pars{2\mu\,\totald{}{\mu} + 1}
\color{#c00000}{\sum_{n\ =\ 0}^{\infty}\mu^{n}{2n \choose n}}
\end{align}
\begin{align}
\color{#c00000}{\sum_{n\ =\ 0}^{\infty}\mu^{n}{2n \choose n}}
&=\sum_{n\ =\ 0}^{\infty}\mu^{n}
\oint_{\verts{z}\ =\ 1}{\pars{1 + z}^{2n} \over z^{n + 1}}
\,{\dd z \over 2\pi\ic}
=\oint_{\verts{z}\ =\ 1}{1 \over z}
\sum_{n\ =\ 0}^{\infty}\bracks{\pars{1 + z}^{2}\mu \over z}^{n}
\,{\dd z \over 2\pi\ic}
\\[5mm]&=\oint_{\verts{z}\ =\ 1}
{1 \over z}{1 \over 1 - \pars{1 + z}^{2}\mu/z}\,{\dd z \over 2\pi\ic}
=-\oint_{\verts{z}\ =\ 1}{1 \over \mu z^{2} + \pars{2\mu - 1}z + \mu}
\,{\dd z \over 2\pi\ic}
\\[3mm]&=-\oint_{\verts{z}\ =\ 1}{1 \over \mu\pars{z - r_{-}}\pars{z - r_{+}}}
\,{\dd z \over 2\pi\ic}
\\[5mm]&\mbox{where}\quad \boxed{\ds{\quad r_{\pm}
\equiv {1 - 2\mu \pm \root{1 - 4\mu} \over 2\mu}\quad}}
\end{align}
Tenga en cuenta que $\ds{\verts{r_{-}}\ <\ 1}$ $\ds{\verts{r_{+}}\ >\ 1}$ tal forma que:
\begin{align}
\color{#c00000}{\sum_{n\ =\ 0}^{\infty}\mu^{n}{2n \choose n}}
&=-\,{1 \over \mu}\,{1 \over r_{-} - r_{+}}
=-\,{1 \over \mu}{1 \over -2\root{1 - 4\mu}/\pars{2\mu}}
={1 \over \root{1 - 4\mu}}
\end{align}
A continuación,
\begin{align}
\color{#66f}{\large\sum_{n\ =\ 0}^{\infty}\mu^{n}{\pars{2n + 1}! \over \pars{n!}^{2}}}
&=\pars{2\mu\,\totald{}{\mu} + 1}{1 \over \root{1 - 4\mu}}
=\color{#66f}{\large{1 \over \root{1 - 4\mu}} + {4\mu \over \pars{1 - 4\mu}^{3/2}}}
\end{align}
Set $\ds{\mu = {1 \over 8}}$ en ambos miembros:
\begin{align}
\color{#66f}{\large%
\sum_{n\ =\ 0}^{\infty}{\pars{2n + 1}! \over 2^{3n}\pars{n!}^{2}}}
&=\color{#66f}{\large2\root{2}} \approx {\tt 2.8284}
\end{align}