Cómo mostrar
$${2\over (2-1)(2^2-1)(2^3-1)}+{2^2\over (2^2-1)(2^3-1)(2^4-1)}+{2^3\over (2^3-1)(2^4-1)(2^5-1)}+\cdots={1\over 9}?\tag1$$
Podemos reescribir $(1)$ como
$$\sum_{n=1}^{\infty}{2^n\over (2^n-1)(2^{n+1}-1)(2^{n+2}-1)}={1\over 9}\tag2$$
${2 ^ n\over (2^n-1)(2^{n+1}-1)(2^{n+2}-1)} = {A\over 2 ^ n-1} + {B\over 2 ^ {n + 1} -1} + {C\over 2 ^ {n + 2} -1} \tag3$$
${2 ^ n\over (2^n-1)(2^{n+1}-1)(2^{n+2}-1)} = {1\over 3(2^n-1)}-{1\over 2 ^ {n + 1} -1} + {2\over 3(2^{n+2}-1)} \tag4$$
$${1\over 3}\sum_{n=1}^{\infty}{1\over 2^n-1}-\sum_{n=1}^{\infty}{1\over 2^{n+1}-1}+{2\over 3}\sum_{n=1}^{\infty}{1\over 2^{n+2}-1}={1\over 9}\tag5$$