sólo haciendo las matrices como en la valoración crítica de David del segundo enlace por uno Cleve Moler. No me deja hacer $n=105,$ pero me hizo llegar $n=35.$
Dan algunas matrices, $A, B, 1, M.$ Aquí el numeral $1$ corresponde a la matriz con todas las entradas $1,$ llamé a ese $C$ por debajo.
$$ 0 \leq a_{ij} \leq n-1, \; \; \; a_{ij} \equiv i + j + \frac{n-3}{2} \pmod n, $$
$$ 0 \leq b_{ij} \leq n-1, \; \; \; b_{ij} \equiv i + 2j -2 \pmod n, $$
$$ c_{ij} = 1, $$
$$ M = nA + B + C. $$
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
3:
parisize = 4000000, primelimit = 500509
? a = [ 2, 0, 1; 0, 1, 2; 1, 2, 0]
%1 =
[2 0 1]
[0 1 2]
[1 2 0]
? b = [ 1, 0, 2; 2, 1, 0; 0, 2, 1]
%2 =
[1 0 2]
[2 1 0]
[0 2 1]
? c = [ 1, 1, 1; 1, 1, 1; 1, 1, 1]
%3 =
[1 1 1]
[1 1 1]
[1 1 1]
? m = 3 * a + b + c
%4 =
[8 1 6]
[3 5 7]
[4 9 2]
? factor(charpoly(a))
%5 =
[x - 3 1]
[x^2 - 3 1]
? factor(charpoly(b))
%6 =
[x - 3 1]
[x^2 + 3 1]
? factor(charpoly(m))
%7 =
[x - 15 1]
[x^2 - 24 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
5:
a:
[3 4 0 1 2]
[4 0 1 2 3]
[0 1 2 3 4]
[1 2 3 4 0]
[2 3 4 0 1]
b:
[1 3 0 2 4]
[2 4 1 3 0]
[3 0 2 4 1]
[4 1 3 0 2]
[0 2 4 1 3]
m = 5 * a + b + c
%4 =
[17 24 1 8 15]
[23 5 7 14 16]
[4 6 13 20 22]
[10 12 19 21 3]
[11 18 25 2 9]
? factor(charpoly(a))
%5 =
[x - 10 1]
[x^4 - 25*x^2 + 125 1]
? factor(charpoly(b))
%6 =
[x - 10 1]
[x^4 - 125 1]
? factor(charpoly(m))
%7 =
[x - 65 1]
[x^4 - 625*x^2 + 78000 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
7:
? factor(charpoly(a))
%5 =
[x - 21 1]
[x^6 - 98*x^4 + 2401*x^2 - 16807 1]
? factor(charpoly(b))
%6 =
[x - 21 1]
[x^6 - 16807 1]
? factor(charpoly(m))
%7 =
[x - 175 1]
[x^6 - 4802*x^4 + 5764801*x^2 - 1988873152 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
9:
? factor(charpoly(a) )
%7 =
[x - 36 1]
[x^2 - 27 1]
[x^6 - 243*x^4 + 13122*x^2 - 177147 1]
? factor(charpoly(b) )
%8 =
[x - 36 1]
[x^2 + 27 1]
[x^6 + 177147 1]
? factor(charpoly(m) )
%9 =
[x - 369 1]
[x^2 - 2160 1]
[x^6 - 19683*x^4 + 86093442*x^2 - 94143001680 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
11:
? factor(charpoly(a))
%5 =
[x - 55 1]
[x^10 - 605*x^8 + 102487*x^6 - 7086244*x^4 + 214358881*x^2 - 2357947691 1]
? factor(charpoly(b))
%6 =
[x - 55 1]
[x^10 + 2357947691 1]
? factor(charpoly(m))
%7 =
[x - 671 1]
[x^10 - 73205*x^8 + 1500512167*x^6 - 12553713506884*x^4 + 45949729863572161*x^2 - 61159090446056598600 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
13:
?
? factor(charpoly(a))
%5 =
[x - 78 1]
[x^12 - 1183*x^10 + 399854*x^8 - 57921708*x^6 + 4078653605*x^4 - 137858491849*x^2 + 1792160394037 1]
? factor(charpoly(b))
%6 =
[x - 78 1]
[x^12 - 1792160394037 1]
? factor(charpoly(m))
%7 =
[x - 1105 1]
[x^12 - 199927*x^10 + 11420230094*x^8 - 279577021469772*x^6 + 3327083045915899205*x^4 - 19004963774880799438801*x^2 + 41753905413411324206651760 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
15:
? factor(charpoly(a))
%5 =
[x - 105 1]
[x^2 - 75 1]
[x^4 - 225*x^2 + 10125 1]
[x^8 - 1800*x^6 + 708750*x^4 - 79734375*x^2 + 2562890625 1]
? factor(charpoly(b))
%6 =
[x - 105 1]
[x^2 + 75 1]
[x^4 - 10125 1]
[x^4 + 50625 2]
? factor(charpoly(m))
%7 =
[x - 1695 1]
[x^2 - 16800 1]
[x^4 - 50625*x^2 + 512568000 1]
[x^8 - 405000*x^6 + 35880570000*x^4 - 908244868359375*x^2 + 6568148865600000000 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
21:
? factor( charpoly(a))
%9 =
[x - 210 1]
[x^2 - 147 1]
[x^6 - 882*x^4 + 194481*x^2 - 12252303 1]
[x^12 - 7056*x^10 + 11668860*x^8 - 6689757438*x^6 + 1664205811884*x^4 - 183478690760211*x^2 + 7355827511386641 1]
? factor( charpoly(b))
%10 =
[x - 210 1]
[x - 21 2]
[x + 21 2]
[x^2 - 21*x + 441 2]
[x^2 + 147 1]
[x^2 + 21*x + 441 2]
[x^6 - 12252303 1]
? factor( charpoly(m))
%11 =
[x - 4641 1]
[x^2 - 64680 1]
[x^6 - 388962*x^4 + 37822859361*x^2 - 1051059451035132 1]
[x^12 - 3111696*x^10 + 2269371561660*x^8 - 573754546059690240*x^6 + 62945022637525450097340*x^4 - 3060402710940787304923125687*x^2 + 54108197115511006692907045070400 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
25:
? factor(charpoly(a))
%7 =
[x - 300 1]
[x^4 - 625*x^2 + 78125 1]
[x^20 - 15625*x^18 + 68359375*x^16 - 130615234375*x^14 + 131225585937500*x^12 - 76389312744140625*x^10 + 27120113372802734375*x^8 - 5960464477539062500000*x^6 + 791624188423156738281250*x^4 - 58207660913467407226562500*x^2 + 1818989403545856475830078125 1]
? factor(charpoly(b))
%8 =
[x - 300 1]
[x^4 - 78125 1]
[x^20 - 1818989403545856475830078125 1]
? factor(charpoly(m))
%9 =
[x - 7825 1]
[x^4 - 390625*x^2 + 30517500000 1]
[x^20 - 9765625*x^18 + 26702880859375*x^16 - 31888484954833984375*x^14 + 20023435354232788085937500*x^12 - 7285052561201155185699462890625*x^10 + 1616484723854227922856807708740234375*x^8 - 222044604925031308084726333618164062500000*x^6 + 18431436932253575378126697614789009094238281250*x^4 - 847032947254300339068322500679641962051391601562500*x^2 + 16543612251060553497428173839580267667770385742187500000 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
35:
? factor( charpoly(a))
%5 =
[x - 595 1]
[x^4 - 1225*x^2 + 300125 1]
[x^6 - 2450*x^4 + 1500625*x^2 - 262609375 1]
[x^24 - 58800*x^22 + 942392500*x^20 - 6430253156250*x^18 + 22590813918750000*x^16 - 45546375353896484375*x^14 + 56625598053505126953125*x^12 - 45323879544822393798828125*x^10 + 23792863499842512817382812500*x^8 - 8143807322924036556243896484375*x^6 + 1750204205365253470420837402343750*x^4 - 214400015157243550126552581787109375*x^2 + 11419131242070580387175083160400390625 1]
? factor( charpoly(b))
%6 =
[x - 595 1]
[x^4 - 300125 1]
[x^4 + 1500625 2]
[x^6 - 262609375 1]
[x^8 - 1500625*x^4 + 2251875390625 2]
? factor( charpoly(m))
%7 =
[x - 21455 1]
[x^4 - 1500625*x^2 + 450374778000 1]
[x^6 - 3001250*x^4 + 2251875390625*x^2 - 482768305881750000 1]
[x^24 - 72030000*x^22 + 1414177745312500*x^20 - 11820513337182128906250*x^18 + 50871697917821843261718750000*x^16 - 125641833194720435000514984130859375*x^14 + 191350382223376715547899626959845458984375*x^12 - 187620244496627071229425371028983150177001953125*x^10 + 120652249258767712686244839929865230231475830078125000*x^8 - 50588556607865112913542176134821560108671009540557861328125*x^6 + 13318325045557471063558895256155938430252362415194511413574218750*x^4 - 1998581152148968001166733191860870554971460885345004498958587646484375*x^2 + 130396558323632395895356353118015771568144032806708128677368164062500000000 1]
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=
=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=