$$\begin{align}
\int_0^1\frac{1}{1+x^6} \,\mathrm dx
&=\frac{1}{2}\left[ \int_0^1 \frac{(1-x^2+x^4)+x^2+(1-x^4)}{(1+x^2)(1-x^2+x^4)} \,\mathrm dx \right]\tag{1}\\
&=\frac{1}{2}\left[\int_0^1 \frac{1}{1+x^2} \,\mathrm dx+ \int_0^1 \frac{x^2}{1+x^6} \,\mathrm dx + \color{grey}{\int_0^1 \frac{1-x^2}{1-x^2+x^4} \,\mathrm dx}\right] \tag{2}\\
&=\frac{1}{2}\left[\frac\pi4+ \frac\pi{12} +\frac{\log(2+\sqrt{3})}{\sqrt{3}} \right] \tag{3}\\
&=\frac12\left[\frac{\pi+\sqrt3\log(2+\sqrt{3})}{3} \right] \tag{4}\\
\end{align}$$
$$\int_0^1\frac{1}{1+x^6} \,\mathrm dx
=\frac{\pi+\sqrt3\log(2+\sqrt{3})}{6}$$
$\text{Explanation : }(3)$
Sustituyendo $\displaystyle t=x+\frac1x\iff \,\mathrm dt=\left(1-\frac1{x^2}\right)\,\mathrm dx$ en la última integral
$$\begin{align}
\color{grey}{J}
&=\color{grey}{\int_0^1 \frac{1-x^2}{1-x^2+x^4} \,\mathrm dx}
=\int_0^1 \frac{\frac{1}{x^2}-1}{x^2-1+\frac{1}{x^2}}\,\mathrm dx
=\int_2^\infty \frac{1}{t^2-3}\,\mathrm dt\\
&=\frac{1}{2\sqrt{3}}\log\left(\frac{2+\sqrt{3}}{2-\sqrt{3}}\right)
=\color{grey}{\frac{\log(2+\sqrt{3})}{\sqrt{3}}}\\
\end{align}$$