$\newcommand{\bd}{\operatorname{bd}}$ Prueban que el $\bd(\bd(\bd(W)))=\bd(\bd(W))$% #% Dónde está un subconjunto del espacio topológico $W$ #%.
Respuestas
¿Demasiados anuncios?$\DeclareMathOperator{\cl}{cl} \DeclareMathOperator{\Int}{en} \DeclareMathOperator{\bd}{bd}$I will denote closure by $\cl$ and interior by $\Int$.
$\bd(W)=\cl(W)-\Int(W)$, por lo que
$$\eqalign{\bd(\bd(W))&=\cl(\cl(W))-\Int(\Int(W))-\Int(\cl(W)\Int(W))\cr&= \cl(W)\Int(W)\Int(\cl(W)\Int(W)),}$$ pero $$\eqalign{\bd(\bd(\bd(W)))&=\cl(\cl(W)-\Int(W)-\Int(\cl(W)-\Int(W)))\cr&-\Int(\cl(W)-\Int(W)-\Int(\cl(W)-\Int(W)))\cr &=\cl(W)\Int(W)\Int(\cl(W)\Int(W))\cr&-(\Int(\cl(W)\Int(W))+\Int(\cl(W)\Int(W))\cr &=\cl(W)\Int(W)\Int(\cl(W)\Int(W))\cr &=\bd(\bd(W)).}$$