$$\int x^2e^{\frac{x^2}2} \, dx$$
No necesito evaluar $\int e^{\frac{x^2}{2}}$ en un método numérico.
Si tomamos $u=x^2, u'=2x$ $v'=e^{\frac{x^2}{2}},v=\int e^{\frac{x^2}2}\,dx$
obtenemos:
$$\int x^2e^{\frac{x^2}{2}} \, dx = x^2\int e^{\frac{x^2}{2}} \,dx-2\int \left( x \int e^{\frac{x^2}2} \,dx\right) dx\text{?}$$
¿La solución es $\displaystyle xe^{\frac{x^2}2}-\int e^{\frac{x^2}{2}}dx$?