$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
$\ds{m: \mathsf{m}\mbox{onday}\,,\ tu: \mathsf{tu}\mbox{esday}\,,\ w: \mathsf{w}\mbox{ednesday}\,,\ th: \mathsf{th}\mbox{ursday}\,,\ f: \mathsf{f}\mbox{riday}}$. $\ds{P_{d}}$ es la probabilidad de la realización de
$\ds{\underline{well}}$ día $\ds{d = m, tu, w,th, fr}$. Tenga en cuenta que
$\bbx{\ds{P_{m} = 0}}$.
\begin{align}
P_{f} & = P_{th}{3 \over 4} + \pars{1 - P_{th}}{1 \over 2} =
{1 \over 4}\,P_{th} + {1 \over 2}\implies
P_{f} - {2 \over 3} = {1 \over 4}\pars{P_{th} - {2 \over 3}}
\\[5mm] \mbox{Similarly},&
\\
P_{f} - {2 \over 3} &= \pars{1 \over 4}^{2}\pars{P_{w} - {2 \over 3}} =
\pars{1 \over 4}^{3}\pars{P_{tu} - {2 \over 3}} =
\pars{1 \over 4}^{4}\pars{P_{m} - {2 \over 3}} = -\,{1 \over 384}
\end{align}
A continuación,
$\ds{P_{f} = {2 \over 3} - {1 \over 384} = \bbx{85 \over 128} \approx 0.6641}$.