$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}\expo{-ay^{2} - b/y^{2}}\,\dd y:\ {\large ?}.\qquad
a, b > 0}$.
\begin{align}&\color{#66f}{\large\int_{0}^{\infty}\expo{-ay^{2} - b/y^{2}}\,\dd y}
\ =\ \overbrace{\int_{0}^{\infty}
\exp\pars{-\root{ab}\bracks{\root{a \over b}y^{2} + \root{b \over a}y^{-2}}}
\,\dd y}^{\ds{\mbox{Set}\quad\pars{a \over b}^{1/4}y \equiv \expo{\theta}}}
\\[3mm]&=\int_{-\infty}^{\infty}
\exp\pars{-\root{ab}\bracks{\expo{2\theta} + \expo{-2\theta}}}
\pars{b \over a}^{1/4}\expo{\theta}\,\dd\theta
\\[3mm]&=\pars{b \over a}^{1/4}\int_{-\infty}^{\infty}
\exp\pars{-\root{ab}\bracks{2\cosh\pars{2\theta}}}
\bracks{\cosh\pars{\theta} + \sinh\pars{\theta}}\,\dd\theta
\\[1cm]&=2\pars{b \over a}^{1/4}\ \overbrace{\int_{0}^{\infty}
\exp\pars{-2\root{ab}\bracks{2\sinh^{2}\pars{\theta} + 1}}
\cosh\pars{\theta}\,\dd\theta}^{\ds{\mbox{Set}\quad t \equiv \sinh\pars{\theta}}}
\\[1cm]&=2\pars{b \over a}^{1/4}\exp\pars{-2\root{ab}}
\int_{0}^{\infty}\exp\pars{-4\root{ab}t^{2}}\,\dd t
\\[1cm]&=2\pars{b \over a}^{1/4}\exp\pars{-2\root{ab}}
\bracks{{1 \over 2\pars{ab}^{1/4}}
\ \overbrace{\int_{0}^{\infty}\exp\pars{-t^{2}}\,\dd t}^{\ds{\root{\pi} \over 2}}}
=\ \color{#66f}{\large\half\,\root{\pi \over a}\expo{-2\root{ab}}}
\end{align}