Tenemos, de que la suma de $n+1$ términos, excluyendo el $m$-th y $m+1$-th, es:
$$
\begin{gathered}
S(n + 1,m) = \sum\limits_{1\, \leqslant \,k\, \leqslant \,m - 1} k + \sum\limits_{m + 2\, \leqslant \,k\, \leqslant \,n + 1} k = \sum\limits_{1\, \leqslant \,k\, \leqslant \,m - 1} k + \sum\limits_{1\, \leqslant \,k\, \leqslant \,n - m} {\left( {k + m + 1} \right)} = \hfill \\
= \left( \begin{gathered}
m \\
2 \\
\end{reunieron} \right) + \left( {m + 1} \right)\left( {n - m} \right) + \left( \begin{gathered}
n + 1 - m \\
2 \\
\end{reunieron} \right) = \hfill \\
= \frac{1}
{2}m\left( {m - 1} \right) + \left( {m + 1} \right)\left( {n - m} \right) + \frac{1}
{2}\left( {n + 1 - m} \right)\left( {n - m} \right) = \hfill \\
= \frac{1}
{2}\left( {m\left( {n - 1} \right) + \left( {n + 3} \right)\left( {n - m} \right)} \right) = \hfill \\
= \frac{1}
{2}\left( {n\left( {n - 1} \right) + 4\left( {n - m} \right)} \right) = \frac{{n\left( {n + 3} \right)}}
{2} - 2m \hfill \\
\end{se reunieron}
$$
Así tendremos:
$$
\begin{gathered}
\frac{{S(n + 1,m)}}
{{n - 1}} = \frac{{99}}
{4}\quad \Rightarrow \quad \left\{ \begin{gathered}
n - 1 = 4\,q \hfill \\
S(n + 1,m) = \frac{{n\left( {n + 3} \right)}}
{2} - 2m = 99\;q \hfill \\
\end{reunieron} \right.\quad \Rightarrow \hfill \\
\Rightarrow \quad \left\{ \begin{gathered}
1 \leqslant m \leqslant n = 4\,q + 1 \hfill \\
n\left( {n + 3} \right) = 198\;q + 4m \hfill \\
\end{reunieron} \right. \hfill \\
\end{se reunieron}
$$
El último se da:
$$
\begin{gathered}
4 \leqslant 4\left( {4q + 1} \right)\left( {q + 1} \right) - 198\;q = 4m \leqslant 4\left( {4\,q + 1} \right) \hfill \\
0 \leqslant \left( {4q + 1} \right)\left( {q + 1} \right) - \frac{{198}}
{4}\;q - 1 \leqslant 4\,q \hfill \\
0 \leqslant q^{\,2} - \frac{{178}}
{{16}}\;q \leqslant \,q \hfill \\
0 \leqslant q - \frac{{178}}
{{16}} \leqslant \,1 \hfill \\
\end{reunieron}
$$
es decir,
$$
\frac{{178}}
{{16}} \leqslant q \leqslant \,\frac{{194}}
{{16}}\quad \Rightarrow \quad \left\lceil {\frac{{178}}
{{16}}} \right\rceil \leqslant q \leqslant \,\left\lfloor {10 + \frac{{34}}
{{16}}} \right\rfloor \quad \Rightarrow \quad 12 \leqslant q \leqslant 12
$$
En conclusión, tenemos que:
$$
\left\{ \begin{gathered}
q = 12 \hfill \\
n = 4\,q + 1 = 49 \hfill \\
m = \frac{1}
{4}\left( {n\left( {n + 3} \right) - 198\;q} \right) = 43 \hfill \\
\end{reunieron} \right.
$$
que en realidad da:
$$
\frac{{S(n + 1,m)}}
{{n - 1}} = \frac{{\frac{{n\left( {n + 3} \right)}}
{2} - 2m}}
{{n - 1}} = \frac{{\frac{{49 \cdot 52}}
{2} - 86}}
{{48}} = \frac{{1188}}
{{48}} = \frac{{99}}
{4}
$$