Estoy muy confundido acerca de esta vinculado, por favor, dame alguna sugerencia sobre cómo demostrarlo. (Nota: $a \ll b$ es sólo una más prolija forma de escribir $a = O(b)$)
Estoy empezando con el enlazado $$f(n) \ll \frac{n}{\log(n)^2}\prod_{p|n}\left(1-\frac{1}{p}\right)^{-1}$$
entonces no veo donde $\phi$ proviene de en $$\frac{n}{\log(n)^2}\prod_{p|n}\left(1-\frac{1}{p}\right)^{-1} \ll \frac{\phi(n)}{\log(n)^2}$$ I know that $\phi(n) = n \prod_{p|n}\left(1-\frac{1}{p}\right)$ but I'm confused because of the $-1$ potencia.
Entonces $$\sum_{n\le x} f(n)^2 \ll \sum_{n\le x}\frac{\phi(n)^2}{\log(n)^2}$$ but I don't understand why it's not $\log(n)^4$ aunque se permite sustituir con una menor potencia en el denominador.
Y, finalmente,$$\sum_{n\le x}\frac{\phi(n)^2}{\log(n)^2} \ll \frac{x^3}{\log(x)^4}$$ and I have no idea how to get that last bound at all. I tried Abel summation which didn't help and I tried using $\ frac{\varphi(n)\sigma(n)}{n^2} < 1$ I've searched a lot of lecture notes and looked in Apostol and I don't see how to deduce it. One idea I had was that maybe it was a typo for $\log(x)^4$ in the denominator and they pulled that out, but that's not permitted since $n \le x$.
Gracias por la ayuda.