$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{\int_{0}^{\infty}\bracks{\ln\pars{x}\arctan\pars{x} \over x}^{2}\,\dd x:\
{\large ?}}$
$$
\mbox{Con la identidad}\quad\int_{0}^{1}{\dd y \sobre x^{2}y^{2} + 1}
={\arctan\pars{x} \over x}\quad\mbox{tendremos}
$$
\begin{align}
&\int_{0}^{\infty}\bracks{\ln\pars{x}\arctan\pars{x} \over x}^{2}\,\dd x
=\int_{0}^{\infty}\ln^{2}\pars{x}
\int_{0}^{1}{\dd y \over x^{2}y^{2} + 1}\int_{0}^{1}{\dd z \over x^{2}z^{2} + 1}\,\dd x
\\[3mm]&=\int_{0}^{1}\int_{0}^{1}
\int_{0}^{\infty}
{\ln^{2}\pars{x} \over \pars{x^{2}y^{2} + 1}\pars{x^{2}z^{2} + 1}}\,\dd x
\,\dd y\,\dd z
\\[3mm]&=\int_{0}^{1}\int_{0}^{1}\braces{
{y^{-2}z^{-2} \over z^{-2} - y^{-2}}
\bracks{\int_{0}^{\infty}
{\ln^{2}\pars{x} \over x^{2} + y^{-2}}\,\dd x
-\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + z^{-2}}\,\dd x}}\,\dd y\,\dd z\tag{1}
\end{align}
Sin embargo, con $\ds{a > 0}$:
\begin{align}
&\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + a^{-2}}\,\dd x
=a\int_{0}^{\infty}{\ln^{2}\pars{x/a} \over x^{2} + 1}\,\dd x
=a\int_{0}^{\infty}{\bracks{\ln\pars{x} - \ln\pars{a}}^{2} \over x^{2} + 1}\,\dd x
\\[3mm]&=a\bracks{\int_{0}^{\infty}{\ln^{2}\pars{x} \over x^{2} + 1}\,\dd x
-2\ln\pars{a}\
\overbrace{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + 1}\,\dd x}^{\ds{=\ 0}}\
+\ \ln^{2}\pars{a}\int_{0}^{\infty}{\dd x \over x^{2} + 1}}
\\[3mm]&={\pi^{3} \over 8}\,a + {\pi \over 2}\,a\ln^{2}\pars{a}\tag{2}
\end{align}
desde
$\ds{\int_{0}^{\infty}{\ln\pars{x} \over x^{2} + 1}\,\dd x = {\pi^{3} \over 8}}$
es bien conocido el resultado.
La sustitución de $\pars{2}$$\pars{1}$:
\begin{align}
&\int_{0}^{\infty}\bracks{\ln\pars{x}\arctan\pars{x} \over x}^{2}\,\dd x
\\[3mm]&=\int_{0}^{1}\int_{0}^{1}\braces{{1 \over y^{2} - z^{2}}
\bracks{{\pi^{3} \over 8}\,\pars{y - z} + {\pi \over 2}\,y\ln^{2}\pars{y}
-{\pi \over 2}\,z\ln^{2}\pars{z}}}\,\dd y\,\dd z
\\[3mm]&={\pi^{3} \over 8}\int_{0}^{1}\int_{0}^{1}{\dd y\,\dd z \over y + z}
+{\pi \over 2}\int_{0}^{1}\int_{0}^{1}
{y\ln^{2}\pars{y} - z\ln^{2}\pars{z} \over y^{2} - z^{2}}\,\dd y\,\dd z
\end{align}
Tanto las integrales pueden ser trivialmente evaluado:
\begin{align}
\int_{0}^{1}\int_{0}^{1}{\dd y\,\dd z \over y + z}
&=2\ln\pars{2}
\\[3mm]\int_{0}^{1}\int_{0}^{1}
{z\ln^{2}\pars{z} - y\ln^{2}\pars{y} \over y^{2} - z^{2}}\,\dd y\,\dd z&=
4\ln\pars{2} - {1 \over 6}\,\pi^{2} - \half\,\zeta\pars{3}
\end{align}
A continuación,
\begin{align}&\color{#66f}{\large
\int_{0}^{\infty}\bracks{\ln\pars{x}\arctan\pars{x} \over x}^{2}\,\dd x}
={\pi^{3} \over 8}\,\bracks{2\ln\pars{2}}
+{\pi \over 2}\bracks{4\ln\pars{2} - {1 \over 6}\,\pi^{2} - \half\,\zeta\pars{3}}
\\[3mm]&=\color{#66f}{\large{1 \over 4}\bracks{\ln\pars{2} - {1 \over 3}}\pi^{3}
+ \bracks{2\ln\pars{2} - {1 \over 4}\,\zeta\pars{3}}\pi}
\approx 6.200200822
\end{align}