Computar $\lim \limits _{x \rightarrow 1} \dfrac{\sin (\pi x^{\alpha})}{\sin (\pi x^{\beta})}$ sin utilizar la regla de L' Hôpital.
Es obvio que el valor es $\dfrac{\alpha}{\beta}$ utilizando L' Hôpital.
Computar $\lim \limits _{x \rightarrow 1} \dfrac{\sin (\pi x^{\alpha})}{\sin (\pi x^{\beta})}$ sin utilizar la regla de L' Hôpital.
Es obvio que el valor es $\dfrac{\alpha}{\beta}$ utilizando L' Hôpital.
Si $\alpha\ne0$ la función $x\mapsto \pi x^\alpha-\pi$ es invertible en una vecindad de $1$ con inversa continua; por supuesto $\lim_{x\to 1}(\pi x^\alpha-\pi)=0$ . A continuación, se establece $t=\pi x^\alpha-\pi$ , $$ \lim_{x\to 1}\frac{\sin(\pi x^\alpha)}{\pi x^\alpha-\pi}= \lim_{t\to 0}\frac{\sin(t+\pi)}{t}=-1. $$ Así que puedes reescribir tu límite como $$ \lim_{x\to 1} \frac{\sin(\pi x^\alpha)}{\pi x^\alpha-\pi} \frac{\pi x^\beta-\pi}{\sin(\pi x^\beta)} \frac{\pi x^\alpha-\pi}{\pi x^\beta-\pi}= \lim_{x\to 1}\frac{\pi x^\alpha-\pi}{\pi x^\beta-\pi}= \lim_{x\to 1}\frac{x^\alpha-1}{x^\beta-1} $$ siempre que este último límite exista (que existe). Ahora debería ser fácil, reescribiendo el límite como $$ \lim_{x\to 1}\frac{x^\alpha-1}{x-1}\frac{x-1}{x^\beta-1}. $$
Los casos en que $\alpha=0$ o $\beta=0$ debería ser fácil de analizar.
Dejemos que $x=1+y$ entonces $$\lim \limits _{x \rightarrow 1} \dfrac{\sin (\pi x^{\alpha})}{\sin (\pi x^{\beta})}=\lim \limits _{y \rightarrow 0} \dfrac{\sin (\pi (1+y)^{\alpha})}{\sin (\pi (1+y)^{\beta})}=\lim \limits _{y \rightarrow 0} \dfrac{\sin (\pi+\pi\alpha y))}{\sin (\pi+\pi\beta y)}$$
$$=\lim \limits _{y \rightarrow 0} \dfrac{\sin (\pi\alpha y)}{\sin (\pi\beta y)}=\lim \limits _{y \rightarrow 0} \dfrac{\pi\alpha y}{\pi\beta y}=\frac{\alpha}{\beta}$$
$$\lim_{x \to 1} \frac{\sin (\pi x^\alpha)}{\sin(\pi x^\beta)} = \lim_{x \to 1} \frac{\sin (\pi x^\alpha-\pi)}{\sin(\pi x^\beta-\pi)}=\lim_{x \to 1} \frac{\sin(\pi x^\alpha - 1)}{\pi x^\alpha - \pi}\frac{\pi x^\beta - \pi}{\sin(\pi x^\beta-\pi)}\frac{x^\alpha-1}{x^\beta-1}$$
Utilizando el hecho de que $\sin t/t \to 1$ como $t \to 0$ se obtiene que el límite expetado es
$$ \lim_{x \to 1}\frac{x^\alpha-1}{x^\beta-1}.$$
Ahora utiliza el hecho de que $\frac{x^\alpha-1}{x-1} \to \alpha$ como $x \to 1$
$$\lim \limits _{x \rightarrow 1} \dfrac{\sin (\pi x^{\alpha})}{\sin (\pi x^{\beta})}=\lim \limits _{x \rightarrow 1} \dfrac{\sin (\pi x^{\alpha}+\pi-\pi)}{\sin (\pi x^{\beta}+\pi-\pi)}=\lim_{x \to 1}\frac{\sin (\pi(x^{\alpha}-1))}{\sin (\pi(x^{\beta}-1))}$$ $$=\lim_{x \to 1}\frac{\sin (\pi(x^{\alpha}-1))}{\pi(x^{\alpha}-1)}\times\frac{1}{\frac{\sin \pi(x^{\beta}-1)}{\pi(x^{\beta}-1)}}\times\frac{\pi(x^{\alpha}-1)}{\pi(x^{\beta}-1)}=\lim_{x \to 1} \frac{x^{\alpha}-1}{x^{\beta}-1}$$ $$=\lim_{x \to 1}\frac{(x-1)(x^{\alpha-1}+...+1)}{(x-1)(x^{\beta-1}+...+1)}=\frac{\alpha}{\beta}$$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.