Primero demostrar que $f(n)\to\infty$ $n\to\infty$ luego aplicar la regla de L'Hopital $$\lim_{n\to\infty}f(n)\sin\left(\frac{1}{n}\right)=\lim_{n\to\infty}\frac{f(n)}{\frac{1}{\sin\left(\frac{1}{n}\right)}}=\lim_{n\to\infty}\frac{f'(n)}{\left(\dfrac{1}{\sin\left(\frac{1}{n}\right)}\right)'}$ $
$$f'(n)=2 \left(\frac{1}{2 n^2}+1\right)^{n^2} n \sin \left(\frac{1}{\sqrt{n^2}}\right)-\left(\frac{1}{2 n}+1\right)^n \sin \left(\frac{1}{\sqrt{n}}\right)$$
y $$\left(\dfrac{1}{\sin\left(\frac{1}{n}\right)}\right)'=\frac{2 \cos \left(\frac{1}{n}\right)}{n^2 \left(1-\cos \left(\frac{2}{n}\right)\right)}$ $
$$\lim_{n\to\infty} \frac{2 \left(\frac{1}{2 n^2}+1\right)^{n^2} n \sin \left(\frac{1}{\sqrt{n^2}}\right)-\left(\frac{1}{2 n}+1\right)^n \sin \left(\frac{1}{\sqrt{n}}\right)}{\frac{2 \cos \left(\frac{1}{n}\right)}{n^2 \left(\cos \left(1-\frac{2}{n}\right)\right)}}=$$
$$=\lim_{n\to\infty}\left[n^2 \sin \left(\frac{1}{n}\right) \left(2 \left(\frac{1}{2 n^2}+1\right)^{n^2} n \sin \left(\frac{1}{\sqrt{n^2}}\right)-\left(\frac{1}{2 n}+1\right)^n \sin \left(\frac{1}{\sqrt{n}}\right)\right) \tan \left(\frac{1}{n}\right)\right]$$
Recordando ahora %#% $ #%
debe llegar al resultado $$\lim_{t\to\infty}\left(1+\frac{1}{t}\right)^t=e;\;\lim_{z\to 0}\frac{\sin z}{z}=1;\;\lim_{z\to 0}\frac{\tan z}{z}=1$