$\rm\: (a,b)=1\stackrel{Bezout}\Rightarrow ak\!+\!bj=1.\:$ % Que $\rm\ w = a\!+\!b\,{\it i}\,.\,\ \langle w\rangle \ni (a\!+\!b\,{\it i}\,)(j\!+\!k\,{\it i}\,)\, =\, aj\!-\!bk+{\it i}\, =:\, \color{#f0f}{ e+{\it i}}$
es de $\rm\quad \Bbb Z\stackrel{h}{\to}\, \Bbb Z[{\it i}\,]/\langle w\rangle\ $ $\rm\,\color{#0b0}{\bf onto,\ }$ $\rm\ mod\,\ w:\,\ \color{#f0f}{{\it i}\,\equiv -e}\phantom{\dfrac{|}{|}}\!\!\Rightarrow\:c\!+\!d\,{\it i}\:\equiv\, c\!-\!d\,e\,\in\, \Bbb Z.\ \ $ % Let $\rm\ n = ww'$
$\rm\quad\!\begin{eqnarray}\rm m\in ker\ h &\iff&\rm w\mid m\iff \phantom{\dfrac{|}{|_|}}\!\!\!\!\!\!\! \dfrac{m}{w}\: =\: \dfrac{m\,w'}{ww'}=\,\dfrac{ma\!-\!mb\,{\it i}}n\:\in\: \Bbb Z[{\it i}\,]\\ &\iff&\rm n\mid ma,mb\!\iff\! \color{#c00}n\mid(ma,mb)=m(a,b)=m\end{eqnarray} $
$\rm\quad So \ \ \ \Bbb Z[{\it i}\,]/\langle w\rangle\, \color{#0b0}{\bf =\ Im\:h}\:\cong\: \Bbb Z/ker\:h \,=\, \Bbb Z/\color{#c00}n\,\Bbb Z\ $ $\ \ $ QED