$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
Permite a $\ds{r \equiv -\,{1 \over 2} + {\root{3} \over 2}\,\ic = \expo{2\pi\ic/3}.\quad r\ \mbox{and}\ \bar{r}\quad \mbox{are the roots of}\quad x^{2} + x + 1 = 0}$.
\begin{align}
{1 \over x^{2} + x + 1} & =
{1 \over \pars{x - r}\pars{x - \bar{r}}} =
\pars{{1 \over x - r} - {1 \over x - \bar{r}}}{1 \over r - \bar{r}} =
\bracks{2\ic\Im\pars{1 \over x - r}}{1 \over 2\ic\Im\pars{r}}
\\[5mm] & =
-\,{2\root{3} \over 3}\,\Im\pars{\bar{r}\bracks{1 \over 1 - \bar{r}x}} =
-\,{2\root{3} \over 3}\,\Im\pars{\bar{r}\sum_{n = 0}^{\infty}
\bracks{\bar{r}x}^{n}} \\[5mm] & =
-\,{2\root{3} \over 3}\,\sum_{n = 0}^{\infty}
x^{n}\,\Im\pars{\bar{r}^{\, n + 1}} =
-\,{2\root{3} \over 3}\,\sum_{n = 0}^{\infty}
x^{n}\,\Im\pars{\exp\pars{-\,{2\bracks{n + 1}\pi \over 3}\,\ic}}
\\[5mm] & =\ \bbox[15px,#ffe,border:2px dashed navy]{\ds{%
{2\root{3} \over 3}\,\sum_{n = 0}^{\infty}
\sin\pars{2\bracks{n + 1}\pi \over 3}x^{n}}}\qquad\qquad\verts{x} < 1
\end{align}