Por la integral de la prueba de comparación tenemos
$$
\int_0^\infty x^{t^2}\,dt \leq \sum_{n=0}^\infty x^{n^2} \leq 1 + \int_0^\infty x^{t^2}\,dt.
$$
Ahora
$$
\begin{align}
\int_0^\infty x^{t^2}\,dt &= \int_0^\infty \exp\left[-\left(t\sqrt{-\log x}\right)^2\right]\,dt \\
&= \frac{1}{\sqrt{-\log x}} \int_0^\infty e^{-u^2}\,du \\
&= \frac{1}{2} \sqrt{\frac{\pi}{-\log x}},
\end{align}
$$
así
$$
\lim_{x \to 1^-} 2 \sqrt{\frac{-\log x}{\pi}} \sum_{n=0}^\infty x^{n^2} = 1.
$$
Para simplificar esto un poco podemos usar el hecho de que
$$
\lim_{x\to 1} \frac{\log x}{x-1} = 1
$$
para obtener
$$
\lim_{x \to 1^-} 2 \sqrt{\frac{1-x}{\pi}} \sum_{n=0}^\infty x^{n^2} = 1.
$$