\begin{align}
\|x-ru\|-\|y-ru\| \textrm{}
&= \sqrt
{\langle x,x \rangle - 2r\langle x,u \rangle + r^2\langle u,u \rangle}
-\sqrt
{\langle y,y \rangle - 2r\langle y,u \rangle + r^2\langle u,u \rangle }
\\
&= \frac
{(\langle x,x \rangle - 2r\langle x,u \rangle + r^2\langle u,u \rangle)
-(\langle y,y \rangle - 2r\langle y,u \rangle + r^2\langle u,u \rangle)}
{\sqrt{\langle x,x \rangle - 2r\langle x,u \rangle + r^2\langle u,u \rangle }
+\sqrt{\langle y,y \rangle - 2r\langle y,u \rangle + r^2\langle u,u \rangle }}\\
&= \frac
{\langle x,x \rangle - \langle y,y \rangle + 2r\langle y-x,u \rangle}
{\sqrt{\langle x,x \rangle - 2r\langle x,u \rangle + r^2\langle u,u \rangle }
+\sqrt{\langle y,y \rangle - 2r\langle x,y \rangle + r^2\langle u,u \rangle }}
\\
&= \frac
{
\dfrac
{\langle x,x \rangle- \langle y,y \rangle}
{r}
+ 2\langle y-x,u \rangle
}
{
\sqrt
{
\dfrac{\langle x,x \rangle}{r^2}
- 2\dfrac{\langle x,u \rangle}{r}
+ \langle u,u \rangle
}
+\sqrt
{
\dfrac{\langle y,y \rangle}{r^2}
- 2\dfrac{\langle x,y \rangle}{r}
+ \langle u,u \rangle
}
}
\\
&\to \frac{\langle y-x,u \rangle}{\|u\|} \text{ as } r \to \infty
\end{align}