6 votos

$R^2$, Estadística F y p-valor de un modelo de interpretación

De la p. 277 de R libro de cocina:

Digamos que tengo un R modelo lm(formula = y ~ u + v + w) y el Summary() muestra:

Multiple R-Squared: 0.4981, Adjust R-Squared: 0.4402 F-statistic:
8.603 on 3 and 26 DF, p-value: 0.0003915

Utilizando Ajustado r-Squared , puedo decir que mi modelo explica 44.02% de la varianza de la y con el resto de 55.98 inexplicable.

Pregunta: ¿los asociados estadística F (con la p-valor < .05) me dicen:

  1. el modelo, en general, es importante (no teniendo en cuenta otros valores de Resumen)
  2. el modelo es significativo en la explicación de la 44.02% de la varianza ajustado (r-cuadrado)

15voto

Roland Puntos 2023

La estadística F te dice si el modelo ajusta a los datos mejor que la media. O, en otras palabras, si $H_0:\;R^2=0$ debe ser rechazado.

Ver: Wikipedia

Para ilustrar que de hecho se utiliza la fórmula dada en el enlace por summary.lm :

x1 <- 1:10
set.seed(42)
x2 <- rnorm(10)
y <- x1+2*x2+rnorm(10)

fit0 <- lm(y~1)
fit1 <- lm(y~x1+x2)

summary(fit1)
#F-statistic:  14.1 on 2 and 7 DF,  p-value: 0.003507 

RSS0 <- sum(residuals(fit0)^2)
RSS1 <- sum(residuals(fit1)^2)

Fvalue <- (RSS0-RSS1)/(3-1)/RSS1*(10-3)
#14.10014
pf(Fvalue,2,7,lower.tail=FALSE)
#0.00350697

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X