(Por favor, disculpe esta segunda solución de post - it es un poco demasiado largo para ser incluido en la solución original)
$$\scriptsize\begin{align}
\color{red}{2n}
&=\boxed{\begin{array}{l}
&2\big[1\\
&\;\; +\left(\frac 12+\frac 12\right)\\
&\;\;+\left(\frac 13+\frac 13+\frac 13\right)\\
&\;\;+\qquad \cdots\qquad\ddots\\
&\;\;+\left(\frac 1n+\frac 1n+\frac 1n+\cdots+\frac 1n\right)\big]
\end{array}}\\\\
&=\boxed{\begin{array}{r}
2\big[\left(1+\frac 12+\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+\left(\frac 12+\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+\left(\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+\ddots\quad\cdots\quad \vdots\\
+\left(\frac 1n\right)\big]
\end{array}}\\\\
&=\boxed{\begin{array}{r}
2\big[1\cdot\frac 11\left(1+\frac 12+\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+2\cdot \frac 12\left(\frac 12+\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+3\cdot \frac 13\left(\frac 13+\frac 14+\cdots +\frac 1n\right)&\\
+\ddots\quad\;\cdots\;\quad\vdots\\
+n\cdot \frac 1n\left(\frac 1n\right)\big]
\end{array}}\\\\
&=\boxed{\begin{array}{r}
2\big[1\left(1+\frac 12+\frac 13+\frac 14+\cdots+\frac 1n\right)& \\
+\frac 12\left(\frac 12+\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\frac 13\left(\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1n\left(\frac 1n\right)\end{array}
\begin{array}{r}
\\
+\frac 12\left(\frac 12+\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\frac 13\left(\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1n\left(\frac 1n\right)\end{array}
\begin{array}{r}
\\
\\
+\frac 13\left(\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1{n}\left(\frac 1n\right)\end{array}
+\cdots
\begin{array}{r}
\\
\\
\\
\\
+\frac 1n\left(\frac 1n\right)\big]\end{array}}\\\\
&=\boxed{\color{blue}{\begin{array}{r}
2\big[1\left(\quad\frac 12+\frac 13+\frac 14+\cdots+\frac 1n\right)& \\
+\frac 12\left(\quad\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\frac 13\left(\quad\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1{n-1}\left(\quad\frac 1n\right)\end{array}}
\color{verde}{\begin{array}{r}
\\
+\frac 12\left(\quad\frac 13+\frac 14+\cdots+\frac 1n\right)&\\
+\frac 13\left(\quad\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1{n-1}\left(\quad\frac 1n\right)\end{array}}
\color{orange}{\begin{array}{r}
\\
\\
+\frac 13\left(\quad\frac 14+\cdots+\frac 1n\right)&\\
+\ddots\quad\cdots\quad\vdots\\
+\frac 1{n-1}\left(\quad\frac 1n\right)\end{array}}
+\cdots
\begin{array}{r}
\\
\\
\\
\\
+\frac 1{n-1}\left(\quad\frac 1n\right)\big]\end{de la matriz}\\
+
\color{blue}{\begin{array} .\big(1+\frac1{2^2}+\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)\end{array}}
+\color{verde}{\begin{array}.\big(\frac1{2^2}+\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)
\end{array}}
+\color{orange}{\begin{array}.\big(\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)
\end{array}}
+\cdots\qquad\qquad
+\begin{array}.\big(\frac 1{n^2}\big)\end{array}
\\
+
\color{magenta}{\begin{array} .\big(1+\frac1{2^2}+\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)\end{array}
+\begin{array}.\big(\frac1{2^2}+\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)
\end{array}
+\begin{array}.\big(\frac 1{3^2}+\frac 1{4^2}+\cdots+\frac 1{n^2}\big)
\end{array}
+\cdots\qquad\qquad
+\begin{array}.\big(\frac 1{n^2}\big)\end{array}}}\\\\
&=
\boxed{
\;\;\color{blue}{\begin{array}
.\big(1+\frac12+\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}}
+\quad\color{verde}{\begin{array}
.\big(\frac12+\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}}
+\;\color{orange}{\begin{array}
.\big(\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}}
+\cdots+\begin{array}
.\big(\frac 1{n-1}+\frac 1n\big)^2
\end{array}+
\tiny\big(\frac 1n\big)^2\\
+\color{magenta}{\begin{array}.\big(1+2\cdot \frac 1{2^2}+3\cdot \frac 1{3^2}+\cdots+n\cdot \frac 1{n^2}\big)\end{array}}}\\\\
&=
\boxed{
\;\;\begin{array}
.\big(1+\frac12+\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}
+\quad\begin{array}
.\big(\frac12+\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}
+\;\begin{array}
.\big(\frac 13+\frac 14+\cdots+\frac 1n\big)^2
\end{array}
+\cdots+\begin{array}
.\big(\frac 1{n-1}+\frac 1n\big)^2
\end{array}+
\tiny\big(\frac 1n\big)^2\\
+\begin{array}.\big(1+\frac 12+\frac 13+\frac 14+\cdots+\frac 1n\big)\end{array}}
\end{align}$$
Anexo
La solución puede ser expresada en una mucho más limpios de forma compacto y el uso de la notación de sumatoria, y también la siguiente notación que acabo de conjurados.
Definir la Espalda-Terminó Serie Armónica como $$B_{r,n}=B_r=\frac 1r+\frac 1{r+1}+\frac 1{r+2}+\cdots+\frac 1n\qquad (1\le r\le n;\;\; r, n\in \mathbb Z)$$
y los cuadrados de los términos de la parte de Atrás de composición Armónica, como la Serie de
$$C_{r,n}=C_r=\frac 1{r^2}+\frac 1{(r+1)^2}+\frac 1{(r+1)^2}+\cdots+\frac 1{n^2}\qquad (1\le r\le n;\;\; r, n\in \mathbb Z)$$
Utilizando las definiciones anteriores, tenemos las siguientes identidades:
$$\begin{align}
B_r&=\frac 1r+B_{r+1}\tag{*}\qquad \text{(recursive definition)}\\
B_r^2&=C_r+2\sum_{r\le s<t\le n} \frac 1{st}\\
&=C_r+2\sum_{s=r}^n\frac 1s\sum_{t=s+1}^n \frac 1t\\
&=C_r+2\sum_{s=r}^n \frac 1s B_{s+1}\tag{**}\\
\end{align}$$
Ahora, de vuelta a la pregunta.
$$\begin{align}
2n
&=2\sum_{r=1}^n r\cdot \frac 1r\\
&=2\sum_{r=1}^n\sum_{j=1}^r \frac 1r &&\text{(counting }r)\\
&=2\sum_{j=1}^n\sum_{r=j}^n\frac 1r &&\text {(swapping summation order)}\\
&=2\sum_{j=1}^nB_j&&\text{(by definition)}\\
&=2\sum_{j=1}^n j\cdot \frac 1jB_j\\
&=2\sum_{j=1}^n\sum_{k=1}^j \frac 1j B_j&&\text{(counting }j)\\
&=2\sum_{k=1}^n\sum_{j=k}^n\frac 1j B_j &&\text {(swapping summation order)}\\
&=2\sum_{k=1}^n\sum_{j=k}^n \frac 1j\left(\frac 1j+B_{j+1}\right)&&\text{(using *)}\\
&=2\sum_{k=1}^n\sum_{j=k}^n \frac 1jB_{j+1}+\sum_{k=1}^n \sum_{j=k}^n\frac 1{j^2}
+\sum_{k=1}^n \sum_{j=k}^n\frac 1{j^2}
&&\text{(isolating }\frac 1{j^2})\\
&=\underbrace{\sum_{k=1}^n\left(2\sum_{j=k}^n \frac 1jB_{j+1}+C_k\right)}\;\quad+\sum_{j=1}^n\sum_{k=1}^j \frac 1{j^2}
&&\begin{array}.\text{(using }\sum_{j=k}^n \frac 1{j^2}=C_k\\
\text{and swapping summation order)}\end{de la matriz}\\
&=\qquad \left(\sum_{k=1}^n B_k^2\right)\;\qquad\qquad+\sum_{j=1}^n j\cdot \frac 1{j^2}
&&\text{(utilizando **)}\\
&=\qquad \left(\sum_{k=1}^n B_k^2\right)\;\qquad\qquad+\sum_{j=1}^n \frac 1{j}\\
&=\qquad \left(\sum_{k=1}^n B_k^2\right)\;\qquad\qquad +B_1\\
\end{align}$$