Podemos suponer sin pérdida de generalidad que el círculo de O es la unidad de círculo, y el círculo de O' radio r con su centro situado en la (R,0). A continuación, por un punto A = (\cos \theta, \sin \theta) on O, we are interested in the equation of the line \ell(\theta) passing through the tangents from A to O'. But this line is precisely the perpendicular to the line segment \overline{AO'} through a point A', where A' is the inversion of A through circle O'. In other words, A' satisfies AO' \cdot A'O' = r^2. Since the line through A and O' is given by y = \frac{\sin \theta}{\cos \theta - R}(x - R), which we can also parametrize as (x(t), y(t)) = O'(1-t) + At = (R(1-t) + t \cos \theta, t \sin \theta), \quad 0 \le t \le 1, and \frac{A'O'}{AO'} = \frac{r^2}{(R-\cos\theta)^2 + \sin^2\theta}, the intersection point P of AO' and A'O' corresponds to the choice t = a O'/AO'; i.e. P = \left(\frac{R(1-r^2 + R^2) + (r^2 - 2R^2)\cos \theta}{1-2R \cos \theta + R^2}, \frac{r^2 \sin \theta}{1 - 2R \cos \theta + R^2}\right). Thus \ell(\theta) \equiv y - P_y = \frac{R - \cos \theta}{\sin\theta}(x - P_x). The locus of the intersection of \ell(\theta) with the tangent line \tau(\theta) \equiv y - \sin \theta = -\cot \theta (x - \cos\theta) is (after a considerable amount of algebra) \mathcal L(\theta;R,r) = \left(\frac{1-r^2}{R} + R - \cos \theta, -\left(\frac{1-r^2}{R} + R\right) \cot \theta + 2 \csc \theta - \sin \theta \right). An animation for various choice of R, r se muestra.
![enter image description here]()
Otra animación que muestra el barrido de la legitimación como el punto de A es elegido en O se muestra.
![enter image description here]()