$$\begin{align*} \int \arcsin\left(\frac{2t}{1+t^2}\right)\,dt&=t\arcsin\left(\frac{2t}{1+t^2}\right)+\int\frac{2t}{1+t^2}\,dt\\ &=t\arcsin\left(\frac{2t}{1+t^2}\right) + \ln(1+t^2)+C \end{align*} $$ así $$ \int\nolimits_0^{\sqrt3} \arcsin\left(\frac{2t}{1+t^2}\right)=\pi/\sqrt3+2\ln2.$ $
Sin embargo el resultado parece ser $ \pi/\sqrt3 $ solamente. ¿Por qué hay este $ 2\ln2 $?
Detalle de:
$$\begin{align*} t \arcsin\left(\frac{2t}{1+t^2}\right)&- \int t \left(\frac{2(1-t^2)}{(1+t^2)^2}\right)\frac{1}{\sqrt{1-\frac{4t^2}{(1+t^2)^2}}}\,dt\\ &= t\arcsin\left(\frac{2t}{1+t^2}\right)- \int \frac{2(1-t^2)t}{(1+t^2)\sqrt{(t^2-1)^2}}\,dt\\ &=t\arcsin\left(\frac{2t}{1+t^2}\right)+\int \frac{2t}{1+t^2}\,dt \end{align*} $$