Aquí es un breve extracto de la discusión a la que he enlazado en mi primer comentario.
Para $s=1$ (que de alguna manera es casi trivial) podemos definir la función
$$ t_1(x)=-\zeta '(0)-\ln(\Gamma(\exp(x)))$$
lo que da por ejemplo $$ t_1(\ln(2)) - t_1(\ln(4)) = \ln(2)+\ln(3) $$
y, en general,
$$ t_1(\ln(a)) - t_1(\ln(b)) = \sum _{k=a}^{b-1} \ln(k) $$
La clave es, que la apariencia artificial versión de $t_1(x)$ da a la serie infinita
$$ t_1(\ln(x)) = \sum _{k=x}^\infty \ln(x) = \ln(x) + \ln(x+1) + \ldots $$
The coefficients of the power series of $t_1(x)$ can easily be given for instance using Pari/GP
t_1(x) + O(x^8)
%1321 = 0.91893853 + 0.57721566*x - 0.53385920*x^2 - 0.32557879*x^3
- 0.12527414*x^4 - 0.033725651*x^5 - 0.0068593536*x^6 - 0.0011726081*x^7
+ O(x^8)
where the coefficients can be described exactly by compositions of Stirling numbers 2nd kind and $\zeta()$-values at positive integer arguments, and where moreover $\zeta(1)$ is replaced by the Euler-$\gamma $ (which, btw, indicates that we have somehow the Ramanujan-like zeta-renormalization at work here)
The first answer is then $$ Q(1,n) = t_1(\ln(1)) - t_1(\ln(n+1)) $$
Para $s=2$
$$ t_2(\ln(x)) = \sum_{k=x}^{\infty} \ln(x)^2 $$
tal que analoguously
$$ Q(2,n) = t_2(\ln(1)) - t_2(\ln(n+1)) = \sum_{k=1}^n \ln(k)^2 $$
I don't have an exact representation for the power series in terms of zetas and Euler-gamma; here is an approximation, where the constant term is $\zeta"(0)$ (the generation scheme allows arbitrary precision depending on the possible size of involved matrices):
t_2(x) = -2.006356455908585 - 0.1456316909673534*x + 0.6345699670487060*x^2
- 0.3868588771980126*x^3 - 0.2407113770463571*x^4 - 0.09916202534448954*x^5
- 0.02847303775799426*x^6 - 0.005923792714748150*x^7 - 0.0009884022636657563*x^8
- 0.0001620035246035620*x^9 - 0.00002414672567100699*x^10
- 0.000001216451660450317*x^11 + 0.0000001409130267444575*x^12
- 0.0000001437552825860954*x^13 - 0.00000003587528042872192*x^14
+ 0.00000001359539422026695*x^15 + O(x^16)
and $$Q(2,n) = - \sum_{k=1}^\infty c_k \cdot \ln(n+1)^k $$ where $c_k$ are the coefficients of the power series and the index $k$ begins at $1$ such that the constant term is skipped.
The numbers and the generation-scheme (even for the higher $s$) puede ser tomado de la discusión a la que he enlazado en mi primer comentario.