Puede ser más instructivo ver el caso general. Definir $$I(m,n) = \int_{x=0}^1 x^n (1-x)^m \, dx, \quad J(m) = \int_{x=0}^1 x^m (1-x^{2m+2})^m \, dx.$$ Then as you wrote with your choice of substitution $$u = x^{m+1}, \quad du = (m+1) x^m \, dx,$$ we find with the binomial theorem $$J(m) = \frac{1}{m+1} \int_{u=0}^1 (1-u^2)^m \, du = \frac{1}{m+1} \int_{u=0}^1 (1+u)^m (1-u)^m \, du = \frac{1}{m+1} \sum_{k=0}^m \binom{m}{k} I(m,k).$$ Now we observe through integration by parts with the choice $u = (1-x) ^ m $, $ du = -m (1-x) ^ {m-1} \, dx $, $ dv = x ^ n \, dx $, $v = \frac{1}{n+1} x^{n+1}$, that $$I(m,n) = \left[-\frac{1}{n+1} x^{n+1} (1-x)^m \right]_{x=0}^1 + \frac{m}{n+1} \int_{x=0}^1 x^{n+1} (1-x)^{m-1} \, dx = \frac{m}{n+1} I(m-1,n+1).$$ With the addition that $I(0,n) = \frac{1}{n+1}$ trivially, we can inductively show that $I (m, n) $ for nonnegative integers $m, n $ is given by $$I(m,n) = \frac{m! \, n!}{(m+n+1)!}.$$ Therefore, $$J(m) = \frac{1}{m+1} \sum_{k=0}^m \frac{m!}{k!(m-k)!} \frac{m! \, k!}{(m+k+1)!} = \frac{1}{m+1} \sum_{k=0}^m \frac{(m!)^2}{(m-k)! (m+k+1)!}$$ and $% $ $\frac{J(m)}{I(m,m)} = \frac{1}{m+1} \sum_{k=0}^m \binom{2m+1}{m-k} = \frac{1}{m+1} \sum_{k=0}^m \binom{2m+1}{k} = \frac{4^m}{m+1},$la identidad última de que tengo a la izquierda como un simple ejercicio.