Puede ser más instructivo ver el caso general. Definir I(m,n)=∫1x=0xn(1−x)mdx,J(m)=∫1x=0xm(1−x2m+2)mdx. Then as you wrote with your choice of substitution u=xm+1,du=(m+1)xmdx, we find with the binomial theorem J(m) = \frac{1}{m+1} \int_{u=0}^1 (1-u^2)^m \, du = \frac{1}{m+1} \int_{u=0}^1 (1+u)^m (1-u)^m \, du = \frac{1}{m+1} \sum_{k=0}^m \binom{m}{k} I(m,k). Now we observe through integration by parts with the choice u = (1-x) ^ m , du = -m (1-x) ^ {m-1} \, dx , dv = x ^ n \, dx , v = \frac{1}{n+1} x^{n+1}, that I(m,n) = \left[-\frac{1}{n+1} x^{n+1} (1-x)^m \right]_{x=0}^1 + \frac{m}{n+1} \int_{x=0}^1 x^{n+1} (1-x)^{m-1} \, dx = \frac{m}{n+1} I(m-1,n+1). With the addition that I(0,n) = \frac{1}{n+1} trivially, we can inductively show that I (m, n) for nonnegative integers m, n is given by I(m,n) = \frac{m! \, n!}{(m+n+1)!}. Therefore, J(m) = \frac{1}{m+1} \sum_{k=0}^m \frac{m!}{k!(m-k)!} \frac{m! \, k!}{(m+k+1)!} = \frac{1}{m+1} \sum_{k=0}^m \frac{(m!)^2}{(m-k)! (m+k+1)!} and % \frac{J(m)}{I(m,m)} = \frac{1}{m+1} \sum_{k=0}^m \binom{2m+1}{m-k} = \frac{1}{m+1} \sum_{k=0}^m \binom{2m+1}{k} = \frac{4^m}{m+1},la identidad última de que tengo a la izquierda como un simple ejercicio.