11 votos

Prueba del negro - Scholes fórmula de opción de llamada Europea de precios

Quiero probar los siguientes

El precio de un europeo llaman opción con strike price $K$ y tiempo de madurez $T$ está dada por la fórmula $\Pi(t) = F(t,S(t))$, donde $$F(t,s) = sN[d_1(t,s)]-e^{-r(T-t)}KN[d_2(t,s)]$ $ $$d_1(t,s) = \frac{1}{\sigma\sqrt{T-t}}\left[\ln \frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)\right]$$ $$d_2(t,s) = d_1(t,s) - \sigma\sqrt{T-t} $ $ y $$N(x) = \int^{\infty}_{-\infty} e^{-\frac{x^2}{2}}\,dx,\,\,X\sim N(0,1)$ $ he conseguido este acuerdo... $$S(T) = s\exp\left[\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\left(W(T)-W(t)\right)\right]$ $ y definir $$Z = \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\left(W(T)-W(t)\right) $ $ con\begin{align*} \mathbb{E}\left(Z\right) & = \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) \\ \mbox{Var}\left(Z\right) & = \sigma^2\left(T-t\right) \end{align*} así \begin{align*} Z\sim N\left(\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right),\sigma^2\left(T-t\right)\right) \end{align*} entonces\begin{align*} F(t,s) & = e^{-r(T-t)}\mathbb{E}^Q\left(\Phi\left(S(T)\right)\right) \\ \,\, & = e^{-r(T-t)} \int^\infty_{-\infty} \Phi\left(S(T)\right)f(z)\,dz \\ \,\; & = e^{-r(T-t)} \int^\infty_{-\infty} \Phi\left(se^z\right)f(z)\,dz \end{align*} wi ¿to el caso de una opción europea ponemos $\Phi(x) = \max\left[x-K,0\right]$ y luego\begin{align*} F(t,s) & = e^{-r(T-t)}\int^\infty_{-\infty} \max\left[se^z-K,0\right]f(z)\,dz \\ \,\, & = e^{-r(T-t)}\left(\int^{\ln \frac{K}{s}}_{-\infty} 0\cdot f(z)\,dz + \int^{\infty}_{\ln\frac{K}{s}} \left(se^z-K\,f(z)\right)\,dz\right) \\ \,\, & = e^{-r(T-t)}\int^{\infty}_{\ln\frac{K}{s}}\left(se^z-K\right)\,f(z)\,dz \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^zf(z)\,dz -K\int^{\infty}_{\ln\frac{K}{s}}f(z)\,dz \right) \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^ze^{-\frac{z^2}{2}}\,dz -K\int^{\infty}_{\ln\frac{K}{s}}e^{-\frac{z^2}{2}}\,dz \right) \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^ze^{-\frac{z^2}{2}}\,dz -KN\left(-\frac{\ln\frac{K}{s}- \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right)\right) \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{z-\frac{z^2}{2}}\,dz -KN\left(-\frac{\ln\frac{K}{s}- \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right)\right) \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(z-1\right)^2+\frac{1}{2}}\,dz-KN\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right)\right) \\ \,\, & = e^{-r(T-t)} \left(se^{\frac{1}{2}}\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(z-1\right)^2}\,dz-KN\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right)\right) \end{align*} fueron voy de aquí? ¡Yo no puedo resolver la integral restante!

12voto

Marc Puntos 1

Ahora vamos a resolver la anterior $SDE$. Esto es sólo un GBM con solución $$S(T) = s\exp\left[\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\left(W(T)-W(t)\right)\right]$ $ y definir #% de %#% $ $$Z = \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\left(W(T)-W(t)\right) $ $ con\begin{align*} \mathbb{E}\left(Z\right) & = \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) \\ \mbox{Var}\left(Z\right) & = \sigma^2\left(T-t\right) \end{align*} y así\begin{align*} Z\sim N\left(\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right),\sigma^2\left(T-t\right)\right) \end{align*} entonces\begin{align*} F(t,s) & = e^{-r(T-t)}\mathbb{E}^Q\left(\Phi\left(S(T)\right)\right) \\ \,\, & = e^{-r(T-t)} \int^\infty_{-\infty} \Phi\left(S(T)\right)f(z)\,dz \\ \,\; & = e^{-r(T-t)} \int^\infty_{-\infty} \Phi\left(se^z\right)f(z)\,dz \end{align*} con el caso de una opción europea que tiene $$Z = \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\sqrt{T-t}Y,\,\,Y\sim N(0,1)$ hen\begin{align*} F(t,s) & = e^{-r(T-t)}\int^\infty_{-\infty} \max\left[se^z-K,0\right]f(z)\,dz \\ \,\, & = e^{-r(T-t)}\left(\int^{\ln \frac{K}{s}}_{-\infty} 0\cdot f(z)\,dz + \int^{\infty}_{\ln\frac{K}{s}} \left(se^z-K\,f(z)\right)\,dz\right) \\ \,\, & = e^{-r(T-t)}\int^{\infty}_{\ln\frac{K}{s}}\left(se^z-K\right)\,f(z)\,dz \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^zf(z)\,dz -K\int^{\infty}_{\ln\frac{K}{s}}f(z)\,dz \right) \\ \,\, & = e^{-r(T-t)} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^zf(z)\,dz -K\int^{\infty}_{\ln\frac{K}{s}}f(z)\,dz \right) \\ \,\, & = \frac{e^{-r(T-t)}}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\sqrt{T-t}y}e^{-\frac{y^2}{2}}\,dy -K\int^{\infty}_{\ln\frac{K}{s}}e^{-\frac{z^2}{2}}\,dz \right) \\ \,\, & = \frac{e^{-r(T-t)}}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right) + \sigma\sqrt{T-t}y-\frac{y^2}{2}}\,dy\right) -Ke^{-r(T-t)}\Phi\left(-\frac{\ln\frac{K}{s}- \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = \frac{e^{-r(T-t)}}{\sqrt{2\pi}} e^{\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}\left(s\int^{\infty}_{\ln\frac{K}{s}} e^{\sigma\sqrt{T-t}y-\frac{y^2}{2}}\,dy\right) -Ke^{-r(T-t)}\Phi\left(-\frac{\ln\frac{K}{s}- \left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = \frac{e^{-\frac{\sigma^2}{2}\left(T-t\right)}}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(y^2-2\sigma\sqrt{T-t} y+\sigma^2\left(T-t\right)\right)}e^{\frac{1}{2}\sigma^2\left(T-t\right)}\,dy\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = \frac{e^{-\frac{\sigma^2}{2}\left(T-t\right)}}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(y-\sigma\sqrt{T-t}\right)^2+\frac{1}{2}\sigma^2\left(T-t\right)}\,dz\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = \frac{e^{-\frac{\sigma^2}{2}\left(T-t\right)}e^{\frac{\sigma^2}{2}\left(T-t\right)}}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(y-\sigma\sqrt{T-t}\right)^2}\,dz\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\ & = \frac{1}{\sqrt{2\pi}} \left(s\int^{\infty}_{\ln\frac{K}{s}} e^{-\frac{1}{2}\left(y-\sigma\sqrt{T-t}\right)^2}\,dz\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = s\Phi\left(-\frac{\ln\frac{K}{s}-\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}+\sigma\sqrt{T-t}\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \\ \,\, & = s\Phi\left(\frac{\ln\frac{s}{K}+\left(r+\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right)-Ke^{-r(T-t)}\Phi\left(\frac{\ln\frac{s}{K}+\left(r-\frac{\sigma^2}{2}\right)\left(T-t\right)}{\sigma\sqrt{T-t}}\right) \end{align*} y eso es todo!

0voto

Marc Puntos 1

Creo que el caso estadounidense está fuera de alcance para el libro que estoy usando. Uno tiene que saber cómo resolver problemas de optimización para derivar la fórmula de precios para opciones americanas, esto poder hacer después que he leído un curso en el próximo semestre. :)

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X