Sé que hay un isomorphism$$H^*(K(\pi, 1), A) \cong \text{Ext}_{\mathbb{Z}[\pi]}^*(\mathbb{Z}, A).$$When $A$ is a commutative ring, the $\text{Ext}$ groups have algebraically defined products, constructed as follows. The evident isomorphism $\mathbb{Z} \cong \mathbb{Z} \otimes P$ is covered by a map of free $\mathbb{Z}[\pi]$-resolutions $\alpha(x \otimes y) \otimes \mathbb{Z}$, where $\mathbb{Z}[\pi]$ acts diagonally on tensor products, $P \to P = \alpha x \otimes \alpha y$. This chain map is unique up to chain homotopy. It induces a map of chain complexes$$\text{Hom}_{\mathbb{Z}[\pi]}(P, A) \otimes \text{Hom}_{\mathbb{Z}[\pi]}(P, A) \to \text{Hom}_{\mathbb{Z}[\pi]}(P, A)$$and therefore an induced product on $\text{Ext} _ {\mathbb {Z} [\pi]} ^ * (\mathbb {Z}, A) $. Mi pregunta es, ¿qué es la intuición detrás de isomorfismo sobre preservación de productos?