Mathematica no retorno de un buen resultado de la integral a continuación, tal vez porque tal no existe, o existe pero que depende mucho de una cierta manera de abordar las cosas. ¿Qué te parece? $$\int_0^1 \frac{\log (x) \log \left(x^2-x+1\right)}{x^2-x+2} \, dx$$
$$=\frac{2 i \log ^3(2)}{3 \sqrt{7}}+\frac{i \log \left(\frac{(-1)^{5/6}}{\sqrt{3}-\sqrt{7}}\right) \log ^2(2)}{\sqrt{7}}+\frac{i \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log ^2(2)}{\sqrt{7}}+\frac{i \log \left(\sqrt[6]{-1} \left(1+i \sqrt{7}\right)\right) \log ^2(2)}{\sqrt{7}}+\frac{2 i \log \left(3-i \sqrt{7}\right) \log ^2(2)}{\sqrt{7}}-\frac{i \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log ^2(2)}{\sqrt{7}}-\frac{i \log \left(i-\sqrt{7}\right) \log ^2(2)}{\sqrt{7}}-\frac{i \log \left(\left(1-i \sqrt{3}\right) \left(-i+\sqrt{7}\right)\right) \log ^2(2)}{\sqrt{7}}-\frac{2 i \log \left(3+i \sqrt{7}\right) \log ^2(2)}{\sqrt{7}}-\frac{\pi \log ^2(2)}{\sqrt{7}}+\frac{i \log ^2\left(\frac{(-1)^{5/6}}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}+\frac{i \log ^2\left(\frac{i-\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}+\frac{i \log ^2\left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}+\frac{i \log ^2\left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right) \log (2)}{\sqrt{7}}+\frac{2 i \log (4) \log \left(\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}+\frac{2 i \log (4) \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}+\frac{2 \pi \log \left(i-\sqrt{7}\right) \log (2)}{3 \sqrt{7}}+\frac{2 i \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right) \log (2)}{\sqrt{7}}+\frac{2 i \log \left(i-\sqrt{7}\right) \log \left(\sqrt[6]{-1} \left(1+i \sqrt{7}\right)\right) \log (2)}{\sqrt{7}}+\frac{2 \pi \log \left(\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)\right) \log (2)}{\sqrt{7}}+\frac{2 i \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3+i \sqrt{7}\right) \log (2)}{\sqrt{7}}+\frac{4 \pi \log \left(7+i \sqrt{7}\right) \log (2)}{\sqrt{7}}+\frac{2 i \log \left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(3-i \sqrt{7}\right) \log (2)}{\sqrt{7}}+\frac{4 \pi \log \left(7-i \sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}-\frac{i \log ^2\left(-\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}-\frac{4 \pi \log (7) \log (2)}{\sqrt{7}}-\frac{8 \pi \log (8) \log (2)}{\sqrt{7}}-\frac{i \log (16) \log \left(i+\sqrt{3}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log (4) \log \left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log (4) \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log \left(i+\sqrt{3}\right) \log \left(-i+\sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log \left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(-i+\sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log \left(-i+\sqrt{3}\right) \log \left(3+i \sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log \left(\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(3+i \sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{2 i \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3-i \sqrt{7}\right) \log (2)}{\sqrt{7}}-\frac{\pi \log (64) \log (2)}{3 \sqrt{7}}-\frac{4 \pi \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log (2)}{3 \sqrt{7}}-\frac{2 \pi \log \left(\left(1-i \sqrt{3}\right) \left(-i+\sqrt{7}\right)\right) \log (2)}{3 \sqrt{7}}+\frac{503 \pi ^3}{648 \sqrt{7}}+\frac{i \log ^3\left(\frac{(-1)^{5/6}}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{i \log ^3\left(\frac{i-\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{i \log ^3\left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{i \log ^3\left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right)}{3 \sqrt{7}}+\frac{i \log (4) \log ^2\left(-i-\sqrt{3}\right)}{\sqrt{7}}+\frac{i \log (64) \log ^2\left(-i+\sqrt{3}\right)}{3 \sqrt{7}}+\frac{\pi \log ^2\left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{\pi \log ^2\left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{i \log (8) \log ^2\left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{i \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log ^2\left(-\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}+\frac{i \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log ^2\left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}+\frac{\pi \log ^2\left(\sqrt[6]{-1} \left(1+i \sqrt{7}\right)\right)}{3 \sqrt{7}}+\frac{2 i \pi ^2 \log \left(-i+\sqrt{3}\right)}{3 \sqrt{7}}+\frac{i \log (4) \log (64) \log \left(-i+\sqrt{3}\right)}{3 \sqrt{7}}+\frac{i \log ^2\left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}+\frac{i \pi ^2 \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{2 \sqrt{7}}+\frac{5 \pi \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(-\frac{2}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}+\frac{13 i \pi ^2 \log \left(i-\sqrt{7}\right)}{18 \sqrt{7}}+\frac{2 \pi \log (32) \log \left(i-\sqrt{7}\right)}{3 \sqrt{7}}+\frac{2 i \log \left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(-i+\sqrt{7}\right)}{\sqrt{7}}+\frac{i \log ^2\left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}+\frac{i \pi ^2 \log \left(\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)\right)}{\sqrt{7}}+\frac{2 i \log \left(\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3+i \sqrt{7}\right)}{\sqrt{7}}+\frac{2 \pi \log (3) \log \left(7+i \sqrt{7}\right)}{\sqrt{7}}+\frac{4 \pi \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(7+i \sqrt{7}\right)}{\sqrt{7}}+\frac{i \log ^2\left(i+\sqrt{3}\right) \log \left(3-i \sqrt{7}\right)}{\sqrt{7}}+\frac{i \log ^2\left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(3-i \sqrt{7}\right)}{\sqrt{7}}+\frac{i \log ^2\left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3-i \sqrt{7}\right)}{\sqrt{7}}+\frac{i \log (64) \log \left(i+\sqrt{3}\right) \log \left(3-i \sqrt{7}\right)}{3 \sqrt{7}}+\frac{4 \pi \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(7-i \sqrt{7}\right)}{\sqrt{7}}+\frac{2 \pi \log (3) \log \left(\frac{1}{448} \left(7-i \sqrt{7}\right)\right)}{\sqrt{7}}-\frac{i \log (4) \log ^2\left(i-\sqrt{3}\right)}{\sqrt{7}}-\frac{i \log (4) \log ^2\left(i+\sqrt{3}\right)}{\sqrt{7}}-\frac{i \log \left(i-\sqrt{7}\right) \log ^2\left(-\frac{2}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{i \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log ^2\left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{i \log ^2\left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{i-\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{i \log ^2\left(-\frac{2}{\sqrt{3}-\sqrt{7}}\right) \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{4 \pi \log (7) \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{8 \pi \log (8) \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right)}{\sqrt{7}}-\frac{i \log ^2\left(i+\sqrt{3}\right) \log \left(-i+\sqrt{7}\right)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(-i+\sqrt{7}\right)}{\sqrt{7}}-\frac{i \log ^2\left(\sqrt[6]{-1} \left(1+i \sqrt{7}\right)\right) \log \left(-(-1)^{2/3} \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}-\frac{2 i \log \left(-\frac{1}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(\left(-1+\sqrt[3]{-1}\right) \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}-\frac{2 i \log (4) \log \left(-i-\sqrt{3}\right) \log \left(\left(1-i \sqrt{3}\right) \left(-i+\sqrt{7}\right)\right)}{\sqrt{7}}-\frac{i \log ^2\left(-i+\sqrt{3}\right) \log \left(3+i \sqrt{7}\right)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(3+i \sqrt{7}\right)}{\sqrt{7}}-\frac{i \log ^2\left(\frac{\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3+i \sqrt{7}\right)}{\sqrt{7}}-\frac{2 i \log \left(\frac{-i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right) \log \left(\frac{\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right) \log \left(3-i \sqrt{7}\right)}{\sqrt{7}}-\frac{i \log ^3\left(-\frac{2}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}-\frac{i \log ^3\left(-\frac{i+\sqrt{3}}{\sqrt{3}-\sqrt{7}}\right)}{3 \sqrt{7}}-\frac{i \pi ^2 \log \left(i+\sqrt{3}\right)}{3 \sqrt{7}}-\frac{5 \pi \log \left(i-\sqrt{7}\right) \log \left(\left(-1-i \sqrt{3}\right) \left(-i+\sqrt{7}\right)\right)}{3 \sqrt{7}}-\frac{i \pi ^2 \log \left(\left(1-i \sqrt{3}\right) \left(-i+\sqrt{7}\right)\right)}{3 \sqrt{7}}-\frac{\pi \log \left(i-\sqrt{7}\right) \log \left(\left(i+\sqrt{3}\right) \left(1+i \sqrt{7}\right)\right)}{3 \sqrt{7}}-\frac{5 \pi \log ^2\left(-\frac{2}{\sqrt{3}-\sqrt{7}}\right)}{6 \sqrt{7}}-\frac{4 i \pi ^2 \log \left(\left(-i+\sqrt{3}\right) \left(1-i \sqrt{7}\right)\right)}{9 \sqrt{7}}-\frac{i \pi ^2 \log (45671926166590716193865151022383844364247891968)}{36 \sqrt{7}} ...\text{and so on (that means many other terms)}$$