Supongamos $\gamma,\lambda,\beta\neq0$ :
$\begin{cases}\begin{cases}\dfrac{\partial F_1(z,t)}{\partial t}+\gamma\dfrac{\partial F_1(z,t)}{\partial z}=\lambda F_2(z,t)-\beta F_1(z,t)F_1(0,t)\\\dfrac{\partial F_2(z,t)}{\partial t}=\beta F_1(z,t)F_1(0,t)-\lambda F_2(z,t)\end{cases}&\text{when}~z>0\\\begin{cases}\dfrac{\partial F_1(z,t)}{\partial t}=\lambda F_2(z,t)-\beta F_1(z,t)F_1(0,t)\\\dfrac{\partial F_2(z,t)}{\partial t}=\beta F_1(z,t)F_1(0,t)-\lambda F_2(z,t)\end{cases}&\text{when}~z=0\end{cases}$
$\therefore\begin{cases}\dfrac{\partial F_2(z,t)}{\partial t}=-\dfrac{\partial F_1(z,t)}{\partial t}-\gamma\dfrac{\partial F_1(z,t)}{\partial z}&\text{when}~z>0\\\dfrac{\partial F_2(z,t)}{\partial t}=-\dfrac{\partial F_1(z,t)}{\partial t}&\text{when}~z=0\end{cases}$
Pero $\begin{cases}\dfrac{\partial^2F_1(z,t)}{\partial t^2}+\gamma\dfrac{\partial^2F_1(z,t)}{\partial t\partial z}=\lambda\dfrac{\partial F_2(z,t)}{\partial t}-\beta F_1(0,t)\dfrac{\partial F_1(z,t)}{\partial t}-\beta\dfrac{\partial F_1(0,t)}{\partial t}F_1(z,t)&\text{when}~z>0\\\dfrac{\partial^2F_1(z,t)}{\partial t^2}=\lambda\dfrac{\partial F_2(z,t)}{\partial t}-\beta F_1(0,t)\dfrac{\partial F_1(z,t)}{\partial t}-\beta\dfrac{\partial F_1(0,t)}{\partial t}F_1(z,t)&\text{when}~z=0\end{cases}$
$\therefore\begin{cases}\dfrac{\partial^2F_1(z,t)}{\partial t^2}+\gamma\dfrac{\partial^2F_1(z,t)}{\partial t\partial z}=-\lambda\dfrac{\partial F_1(z,t)}{\partial t}-\gamma\lambda\dfrac{\partial F_1(z,t)}{\partial z}-\beta F_1(0,t)\dfrac{\partial F_1(z,t)}{\partial t}-\beta\dfrac{\partial F_1(0,t)}{\partial t}F_1(z,t)&\text{when}~z>0~......(1)\\\dfrac{\partial^2F_1(z,t)}{\partial t^2}=-\lambda\dfrac{\partial F_1(z,t)}{\partial t}-\beta F_1(0,t)\dfrac{\partial F_1(z,t)}{\partial t}-\beta\dfrac{\partial F_1(0,t)}{\partial t}F_1(z,t)&\text{when}~z=0~......(2)\end{cases}$
Para $(2)$, esta es una ODA.
$\dfrac{\partial^2F_1(z,t)}{\partial t^2}=-\lambda\dfrac{\partial F_1(z,t)}{\partial t}-\beta F_1(0,t)\dfrac{\partial F_1(z,t)}{\partial t}-\beta\dfrac{\partial F_1(0,t)}{\partial t}F_1(z,t)$
$\dfrac{\partial^2F_1(z,t)}{\partial t^2}+\lambda\dfrac{\partial F_1(z,t)}{\partial t}=-\beta\dfrac{\partial(F_1(0,t)F_1(z,t))}{\partial t}$
$\dfrac{\partial F_1(z,t)}{\partial t}+\lambda F_1(z,t)=-\beta F_1(0,t)F_1(z,t)+C_1(z)$
$\dfrac{\partial F_1(z,t)}{\partial t}+(\lambda+\beta F_1(0,t))F_1(z,t)=C_1(z)$
Deje $F_1(0,t)=f(t)$ ,
A continuación, $\dfrac{\partial F_1(z,t)}{\partial t}+(\lambda+\beta f(t))F_1(z,t)=C_1(z)$
I. F. $=e^{\lambda t+\beta\int_0^tf(\tau)~d\tau}$
$\therefore\dfrac{\partial}{\partial t}(e^{\lambda t+\beta\int_0^tf(\tau)~d\tau}F_1(z,t))=C_1(z)e^{\lambda t+\beta\int_0^tf(\tau)~d\tau}$
$e^{\lambda t+\beta\int_0^tf(\tau)~d\tau}F_1(z,t)=C_1(z)\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+C_2(z)$
$F_1(z,t)=C_1(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+C_2(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}$
$\therefore C_1(z)-C_1(z)(\lambda+\beta f(t))e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-C_2(z)(\lambda+\beta f(t))e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}=\lambda F_2(z,t)-\beta C_1(z)f(t)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-\beta C_2(z)f(t)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}$
$F_2(z,t)=\dfrac{C_1(z)}{\lambda}-C_1(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-C_2(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}$
Por lo tanto $\begin{cases}F_1(z,t)=C_1(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+C_2(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\\F_2(z,t)=\dfrac{C_1(z)}{\lambda}-C_1(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-C_2(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\end{cases}~\text{when}~z=0$
$F_1(z,0)=\sigma(z)$ $F_2(z,0)=0$ :
$\begin{cases}C_2(z)=\sigma(z)\\\dfrac{C_1(z)}{\lambda}-C_2(z)=0\end{cases}~\text{when}~z=0$
$\begin{cases}C_1(z)=\lambda\sigma(z)\\C_2(z)=\sigma(z)\end{cases}~\text{when}~z=0$
$\therefore\begin{cases}F_1(z,t)=\lambda\sigma(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+\sigma(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\\F_2(z,t)=\sigma(z)-\lambda\sigma(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-\sigma(z)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\end{cases}~\text{when}~z=0$ donde $f(t)$ es la solución de $\lambda\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}=f(t)$
$\begin{cases}F_1(0,t)=\lambda\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\\F_2(0,t)=\sigma(0)-\lambda\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du-\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\end{cases}$ donde $f(t)$ es la solución de $\lambda\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}\int_0^te^{\lambda u+\beta\int_0^uf(\tau)~d\tau}~du+\sigma(0)e^{-\lambda t-\beta\int_0^tf(\tau)~d\tau}=f(t)$