Supongamos que la respuesta es $f(m,n)$.
Empezar con $f(0,0)=1$$f(m,0)=0$$m \gt 0$. Claramente $f(m,n)=0$ si $m \lt 2n$.
Ahora teniendo en cuenta el número de bolas $j$ en el primer cuadro, se tiene la expresión $$f(m,n) = \sum_{j=2}^{m-2n+2} {m \choose j} f(m-j,n-1)$$
I think this gives the following values for small $m$ and $n$
[m,n] [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 0 0 0 0 0 0 0 0
[2,] 1 0 0 0 0 0 0 0
[3,] 1 0 0 0 0 0 0 0
[4,] 1 6 0 0 0 0 0 0
[5,] 1 20 0 0 0 0 0 0
[6,] 1 50 90 0 0 0 0 0
[7,] 1 112 630 0 0 0 0 0
[8,] 1 238 2940 2520 0 0 0 0
[9,] 1 492 11508 30240 0 0 0 0
[10,] 1 1002 40950 226800 113400 0 0 0
[11,] 1 2024 137610 1367520 2079000 0 0 0
[12,] 1 4070 445896 7271880 22869000 7484400 0 0
[13,] 1 8164 1410552 35692800 196396200 194594400 0 0
[14,] 1 16354 4390386 165957792 1454653200 2951348400 681080400 0
[15,] 1 32736 13514046 742822080 9771762000 34205371200 23837814000 0
[16,] 1 65502 41278068 3234711480 61305644400 336151015200 476756280000 81729648000
Having done the calculations, it is then possible to look the values up to see if anybody else has done something similar. It turns out this is OEIS A200091, which gives alternative formulae and generating functions. In particular it gives the equivalent of $$f(m,n) = n\,f(m-1,n) + (m-1)\,n\,f(m-2,n-1)$$