Evaluar $$\sum_{n=1}^{\infty}\frac{n}{3^n-1}.$$
Solución(Parcial):
$|x|<1$
$$\sum_{n=1}^{\infty}\frac{nx^{n-1}}{3^n-1}=\frac{d}{dt}\sum_{n=1}^{\infty}\frac{t^n}{3^n-1}\big{|}_{t=x}$$
$$\sum_{n=1}^{\infty}\frac{t^n}{3^n-1}=\sum_{n=1}^{\infty} t^n\sum_{k=1}^{\infty}\frac{1}{3^{kn}}=\\ \sum_{n=1}^{\infty}\sum_{k=1}^{\infty}\frac{t^n}{3^{kn}}=\sum_{k=1}^{\infty}\frac{\frac{t}{3^k}}{1-\frac{t}{3^k}}=\sum_{k=1}^{\infty}\frac{t}{3^k-t}$$
$$\frac{d}{dt}\sum_{k=1}^{\infty}\frac{t}{3^k-t}\big{|}_{t=x}=\sum_{k=1}^{\infty}\frac{1}{3^k-x}+\frac{x}{(3^k-x)^2}$$
como $x\to 1-$
$$\sum_{n=1}^{\infty}\frac{n}{3^n-1}=\sum_{k=1}^{\infty}\frac{1}{3^k-1}+\frac{1}{(3^k-1)^2}=\sum_{k=1}^{\infty}\frac{1}{3^k-1}+\sum_{k=1}^{\infty}\frac{1}{(3^k-1)^2}$$
$$\Rightarrow \sum_{n=1}^{\infty}\frac{n-1}{3^n-1}=\sum_{k=1}^{\infty}\frac{1}{(3^k-1)^2}$$
Pero $\frac{n-1}{3^n-1}>\frac{1}{(3^n-1)^2}$ todos los $n\geq 2$
Siguiente parte de la solución después de la respuesta de la Profesora Vector:
$$\sum_{k=1}^{\infty}\frac{1}{3^k-1}+\frac{1}{(3^k-1)^2}=\sum_{k=1}^{\infty} \frac{3^k}{(3^k-1)^2}=\sum_{k=1}^{\infty} \frac{1}{3^k-2+\frac{1}{3^k}}=\sum_{k=1}^{\infty} \frac{1}{(3^{k/2}-3^{-k/2})^2}\\=\frac{1}{4}\sum_{k=1}^{\infty} \frac{1}{\big{(}\frac{e^{\frac{\log 3}{2}k}-e^{-\frac{\log 3}{2}k}}{2}\big{)}^2}=\sum_{k=1}^{\infty}\frac{1}{4\sinh^2\big{(}\frac{\log 3}{2}k\big{)}}$$
No puedo ir más lejos después de la última expresión. No tengo mucha experiencia sobre Hiperbólico Trigonométrica de la serie.
El principal de correos está aquí. El principal cartel está inactivo durante 8 meses, así que tuve que publicar aquí. Yo no podía hacerlo hace 5 años. Yo no podía hacerlo ahora tristemente!