Como he sugerido en el comentario de ayer,
deje $x=2m\cos y\implies(2m\cos y)^3-(2m\cos y)+1=0\ \ \ \ (1)$
Como $\cos3y=4\cos^3y-3\cos y,$
$2m^3(\cos3y+3\cos y)-(2m\cos y)+1=0$
$\iff2m^3\cos3y+2m\cos y(m^2-1)+1=0\ \ \ \ (2)$
WLOG elija $m^2-1=0\iff m=\pm1$
Deje $m=1$
$(1)$ reduce a $8\cos^3y-6\cos y+1=0 \ \ \ \ (3)$
y $(2)\implies\cos3y=-\dfrac12\implies3y=360^\circ n\pm120^\circ$ donde $n$ es cualquier entero
$\implies y=120^\circ n+40^\circ$ donde $n\equiv-1,0,1\pmod3$
Así, las raíces de $(3)$
$\cos(-80^\circ)=\cos80^\circ$ $\cos40^\circ,\cos160^\circ=\cos(180^\circ-20^\circ)=-\cos20^\circ<0$
Claramente, $\cos40^\circ>\cos80^\circ>0>-\cos20^\circ$
$\implies c=2\cos40^\circ, b=2\cos80^\circ, a=2\cos160^\circ$
$\implies\dfrac ab=\dfrac{2\cos160^\circ}{2\cos80^\circ}=\dfrac{2\cos^280^\circ-1}{\cos80^\circ}=2\cos80^\circ-\dfrac1{\cos80^\circ}$
$\implies\sum_{\text{cyc}}\dfrac ab=2\sum_{\text{cyc}}\cos80^\circ-\sum_{\text{cyc}}\dfrac1{\cos80^\circ}$
El uso de Vieta de la fórmula en $(3),\sum_{\text{cyc}}\cos80^\circ=0,$
$\cos40^\circ\cos80^\circ+\cos40^\circ\cos160^\circ+\cos80^\circ\cos160^\circ=\dfrac{-6}8$
y $\cos40^\circ\cos80^\circ\cos160^\circ=-\dfrac18$
y $\sum_{\text{cyc}}\dfrac1{\cos80^\circ}=\dfrac{\cos40^\circ\cos80^\circ+\cos40^\circ\cos160^\circ+\cos80^\circ\cos160^\circ}{\cos40^\circ\cos80^\circ\cos160^\circ}=\cdots=6$
No se intenta con $m=-1?$