Como he sugerido en el comentario de ayer,
deje x=2mcosy⟹(2mcosy)3−(2mcosy)+1=0 (1)
Como cos3y=4cos3y−3cosy,
2m3(cos3y+3cosy)−(2mcosy)+1=0
⟺2m3cos3y+2mcosy(m2−1)+1=0 (2)
WLOG elija m2−1=0⟺m=±1
Deje m=1
(1) reduce a 8cos3y−6cosy+1=0 (3)
y (2)⟹cos3y=−12⟹3y=360∘n±120∘ donde n es cualquier entero
⟹y=120∘n+40∘ donde n\equiv-1,0,1\pmod3
Así, las raíces de (3)
\cos(-80^\circ)=\cos80^\circ \cos40^\circ,\cos160^\circ=\cos(180^\circ-20^\circ)=-\cos20^\circ<0
Claramente, \cos40^\circ>\cos80^\circ>0>-\cos20^\circ
\implies c=2\cos40^\circ, b=2\cos80^\circ, a=2\cos160^\circ
\implies\dfrac ab=\dfrac{2\cos160^\circ}{2\cos80^\circ}=\dfrac{2\cos^280^\circ-1}{\cos80^\circ}=2\cos80^\circ-\dfrac1{\cos80^\circ}
\implies\sum_{\text{cyc}}\dfrac ab=2\sum_{\text{cyc}}\cos80^\circ-\sum_{\text{cyc}}\dfrac1{\cos80^\circ}
El uso de Vieta de la fórmula en (3),\sum_{\text{cyc}}\cos80^\circ=0,
\cos40^\circ\cos80^\circ+\cos40^\circ\cos160^\circ+\cos80^\circ\cos160^\circ=\dfrac{-6}8
y \cos40^\circ\cos80^\circ\cos160^\circ=-\dfrac18
y \sum_{\text{cyc}}\dfrac1{\cos80^\circ}=\dfrac{\cos40^\circ\cos80^\circ+\cos40^\circ\cos160^\circ+\cos80^\circ\cos160^\circ}{\cos40^\circ\cos80^\circ\cos160^\circ}=\cdots=6
No se intenta con m=-1?