$\newcommand{\angles}[1]{\left\langle\, #1 \,\right\rangle} \newcommand{\braces}[1]{\left\lbrace\, #1 \,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\, #1 \,\right\rbrack} \newcommand{\ceil}[1]{\,\left\lceil\, #1 \,\right\rceil\,} \newcommand{\dd}{{\rm d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}} \newcommand{\expo}[1]{\,{\rm e}^{#1}\,} \newcommand{\fermi}{\,{\rm f}} \newcommand{\floor}[1]{\,\left\lfloor #1 \right\rfloor\,} \newcommand{\half}{{1 \over 2}} \newcommand{\ic}{{\rm i}} \newcommand{\iff}{\Longleftrightarrow} \newcommand{\imp}{\Longrightarrow} \newcommand{\Li}[1]{\,{\rm Li}_{#1}} \newcommand{\norm}[1]{\left\vert\left\vert\, #1\,\right\vert\right\vert} \newcommand{\pars}[1]{\left(\, #1 \,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\pp}{{\cal P}} \newcommand{\root}[2][]{\,\sqrt[#1]{\vphantom{\large A}\,#2\,}\,} \newcommand{\sech}{\,{\rm sech}} \newcommand{\sgn}{\,{\rm sgn}} \newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}} \newcommand{\ul}[1]{\underline{#1}} \newcommand{\verts}[1]{\left\vert\, #1 \,\right\vert}$
Con $\ds{\verts{a} < 1}$ :
\begin{align}&\color{#66f}{\large\int_{0}^{\pi/2}{\dd x \over 1 - a\sin\pars{x}}} =\int_{0}^{\pi/2}{1 + a\sin\pars{x} \over 1 - a^{2}\sin^{2}\pars{x}}\,\dd x =\int_{0}^{\pi/2}{1 + a\sin\pars{x} \over 1 - a^{2} + a^{2}\cos^{2}\pars{x}}\,\dd x \\[5mm]&=\int_{0}^{\pi/2} {\sec^{2}\pars{x} \over \pars{1 - a^{2}}\sec^{2}\pars{x} + a^{2}} \,\dd x +\int_{0}^{\pi/2}{a\sin\pars{x} \over a^{2}\cos^{2}\pars{x} + 1 - a^{2} }\,\dd x \\[5mm]&=\underbrace{\int_{0}^{\pi/2} {\sec^{2}\pars{x} \over \pars{1 - a^{2}}\tan^{2}\pars{x} + 1}\,\dd x} _{\ds{\dsc{y}\ \equiv \dsc{\root{1 - a^{2}}\tan\pars{x}}}}\ +\ {1 \over 1 - a^{2}}\ \underbrace{\int_{0}^{\pi/2}{a\sin\pars{x} \over a^{2}\cos^{2}\pars{x}/\pars{1 - a^{2}} + 1}\,\dd x} _{\ds{\dsc{z}\ \equiv\ \dsc{{\verts{a} \over \root{1 - a^{2}}}\,\cos\pars{x}}}} \end{align}
Entonces,
\begin{align}&\color{#66f}{\large\int_{0}^{\pi/2}{\dd x \over 1 - a\sin\pars{x}}} \\[5mm]&={1 \over \root{1 - a^{2}}}\int_{0}^{\infty}{\dd y \over y^{2} + 1} - {\sgn\pars{a}\root{1 - a^{2}} \over 1 - a^{2}} \int_{\verts{a}/\root{1 - a^{2}}}^{0}{\dd z \over z^{2} + 1} \\[5mm]&={1 \over \root{1 - a^{2}}}\bracks{% {\pi \over 2} + \sgn\pars{a}\arctan\pars{\verts{a} \over \root{1 - a^{2}}}} \\[5mm]&=\color{#66f}{\large{1 \over \root{1 - a^{2}}}\bracks{% {\pi \over 2} + \arctan\pars{a \over \root{1 - a^{2}}}}} \end{align}