Para \sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!\alpha^{2n}(2y-1)^{2k+1}}{2^{2n+1}(2n)!k!(n-k)!(2k+1)} ,
\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(-1)^kn!\alpha^{2n}(2y-1)^{2k+1}}{2^{2n+1}(2n)!k!(n-k)!(2k+1)}
=\sum\limits_{k=0}^\infty\sum\limits_{n=k}^\infty\dfrac{(-1)^kn!\alpha^{2n}(2y-1)^{2k+1}}{2^{2n+1}(2n)!k!(n-k)!(2k+1)}
=\sum\limits_{k=0}^\infty\sum\limits_{n=0}^\infty\dfrac{(-1)^k(n+k)!\alpha^{2n+2k}(2y-1)^{2k+1}}{2^{2n+2k+1}(2n+2k)!k!n!(2k+1)}
=\sum\limits_{k=0}^\infty\sum\limits_{n=0}^\infty\dfrac{(-1)^k\alpha^{2n+2k}(2y-1)^{2k+1}\sqrt\pi}{2^{4n+4k+1}\Gamma\left(n+k+\dfrac{1}{2}\right)n!k!\left(k+\dfrac{1}{2}\right)} (de acuerdo a https://en.wikipedia.org/wiki/Multiplication_theorem#Gamma_function-Legendre_function)
Para \sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(k!)^2\alpha^{2n+1}(2y-1)(1-(2y-1)^2)^{k+\frac{1}{2}}}{2^{4n-2k+3}n!(n+1)!(2k+1)!} ,
\sum\limits_{n=0}^\infty\sum\limits_{k=0}^n\dfrac{(k!)^2\alpha^{2n+1}(2y-1)(1-(2y-1)^2)^{k+\frac{1}{2}}}{2^{4n-2k+3}n!(n+1)!(2k+1)!}
=\sum\limits_{k=0}^\infty\sum\limits_{n=k}^\infty\dfrac{(k!)^2\alpha^{2n+1}(2y-1)(1-(2y-1)^2)^{k+\frac{1}{2}}}{2^{4n-2k+3}n!(n+1)!(2k+1)!}
=\sum\limits_{k=0}^\infty\sum\limits_{n=0}^\infty\dfrac{(k!)^2\alpha^{2n+2k+1}(2y-1)(1-(2y-1)^2)^{k+\frac{1}{2}}}{2^{4n+2k+3}(n+k)!(n+k+1)!(2k+1)!}
=\sum\limits_{k=0}^\infty\sum\limits_{n=0}^\infty\dfrac{(k!)^2\alpha^{2n+2k+1}(2y-1)(1-(2y-1)^2)^{k+\frac{1}{2}}\sqrt\pi}{16^{n+k+1}(n+k)!(n+k+1)!\Gamma(k+1)\Gamma\left(k+\dfrac{3}{2}\right)} (de acuerdo a https://en.wikipedia.org/wiki/Multiplication_theorem#Gamma_function-Legendre_function)
que ambos se refieren a Kampé de Fériet función función