$\newcommand{\+}{^{\daga}}
\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\down}{\downarrow}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\isdiv}{\,\left.\a la derecha\vert\,}
\newcommand{\cy}[1]{\left\vert #1\right\rangle}
\newcommand{\ol}[1]{\overline{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\ul}[1]{\underline{#1}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}
\newcommand{\wt}[1]{\widetilde{#1}}$
$\ds{{\rm I}\pars{a} = \int_{0}^{\pi}\ln\pars{1 - 2a\cos\pars{x} + a^{2}}\, \dd x:\
{\large ?}.\qquad \geq 0}$.
\begin{align}
{\rm I}\pars{a}&=\half\int_{-\pi}^{\pi}\ln\pars{1 - 2a\cos\pars{x} + a^{2}}\,\dd x
=\half\int_{\verts{z}=1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{1 - 2a\,{z^{2} + 1 \over 2z} + a^{2}}\,{\dd z \over \ic z}
\\[3mm]&=-\,\half\ic
\int_{\verts{z}=1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{-az^{2} + \bracks{a^{2} + 1}z - a \over z}\,{\dd z \over z}
\\[3mm]&=-\,\half\ic
\int_{\verts{z}=1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{-a\bracks{z - a}\bracks{z - 1/a} \over z}\,{\dd z \over z}
\\[3mm]&=-\,\half\ic
\int_{\verts{z}=1 \atop {\vphantom{\Huge A}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{-a\bracks{z - \mu_{<}}\bracks{z - \mu_{>}} \over z}\,{\dd z \over z}
\quad\mbox{where}\quad
\mu_{< \atop >} \equiv {\min \atop \max}\braces{a, {1 \over a}}
\\[3mm]&\mbox{and}\quad 0\ \leq\ \mu_{<} < 1\,,\quad \mu_{>}\ >\ 1
\end{align}
$$
{\rm I}\pars{un}=
-\,\media\ic\int_{\verts{z}=1
\cima {\vphantom{\Enorme}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{\bracks{z \mu_{<}}\bracks{\mu_{>} - z}}\,{\dd z \sobre z}
+\media\ic\int_{\verts{z}=1 \cima {\vphantom{\Enorme}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{z \a través de una}\,{\dd z \sobre z}
$$
$$
\media\ic\int_{\verts{z}=1 \cima {\vphantom{\Enorme}\verts{{\rm Arg}\pars{z}} < \pi}}
\ln\pars{z \a través de una}\,{\dd z \sobre z}
=\media\ic\int_{-\pi}^{\pi}\ln\pars{\expo{\ic\theta} \más de una}\,{\expo{\ic\theta}\ic\,\dd\theta \\expo{\ic\theta}} = \pi\ln\pars{un}
$$
\begin{align}
&\color{#c00000}{\large{\rm I}\pars{a} - \pi\ln\pars{a}}
=\half\,\ic\int_{-1}^{\mu_{<}}{\ln\pars{\bracks{\mu_{<} - x}\bracks{\mu_{>} - x}}
+ \ic\pi \over x + \ic 0^{+}}\,\dd x
\\[3mm]&\mbox{} + \half\,\ic\int_{\mu_{<}}^{-1}
{\ln\pars{\bracks{\mu_{<} - x}\bracks{\mu_{>} - x}}
- \ic\pi \over x - \ic 0^{+}}\,\dd x
\\[3mm]&=\half\,\ic\pars{\int_{-1}^{\mu_{<}}{\braces{\ln\pars{\bracks{\mu_{<} - x}\bracks{\mu_{>} - x}} + \ic\pi}}\bracks{\pp{1 \over x} - \ic\pi\delta\pars{x}}
\,\dd x}
\\[3mm]&\phantom{=}\mbox{} -\half\,\ic\pars{\int_{-1}^{\mu_{<}}{\braces{\ln\pars{\bracks{\mu_{<} - x}\bracks{\mu_{>} - x}} - \ic\pi}}\bracks{\pp{1 \over x} + \ic\pi\delta\pars{x}}\,\dd x}
\\[3mm]&=\half\ic\pp\int_{-1}^{\mu_{<}}2\pi\ic\,{\dd x \over x}
=-\pi\lim_{\epsilon \to 0^{+}}\pars{\int_{-1}^{-\epsilon}{\dd x \over x}
+\int_{\epsilon}^{\mu_{<}}{\dd x \over x}}=-\pi\ln\pars{\mu_{<}}
\\[3mm]&=\color{#c00000}{\large -\pi\Theta\pars{1 - a}\ln\pars{a} -\pi\Theta\pars{a - 1}\ln\pars{1 \over a}}
\end{align}
$$\color{#00f}{\large%
{\rm I}\pars{a} = \Theta\pars {- 1}\bracks{2\pi\ln\pars{un}}}
$$
que se ha calculado para $\ds{\color{#c00000}{a > 0}}$.
De la $\ds{{\rm I}\pars{a}}$ definición original es claro que
$\ds{\color{#c00000}{{\rm I}\pars{un}\ \mbox{es}\ \ul{\mbox{incluso}}\
\mbox{función de}\ a}}$ y que
$\ds{\color{#c00000}{{\rm I}\pars{0} = 0}}$. Entonces, la solución
$\ds{\color{#c00000}{\forall\ a \in {\mathbb R}}}$ está dada por:
$$\color{#00f}{\large%
{\rm I}\pars{a} = \Theta\pars{\verts{a} - 1}\bracks{2\pi\ln\pars{\verts{un}}}}
$$