9 votos

BUSCAR

Que $\frac{1}{\sin 8^\circ}+\frac{1}{\sin 16^\circ}+\frac{1}{\sin 32^\circ}+....+\frac{1}{\sin 4096^\circ}+\frac{1}{\sin 8192^\circ}=\frac{1}{\sin \alpha}$ $\alpha\in(0,90^\circ)$, entonces Dónde está $\alpha$(in degree.)


$\frac{1}{\sin 8^\circ}+\frac{1}{\sin 16^\circ}+\frac{1}{\sin 32^\circ}+....+\frac{1}{\sin 4096^\circ}+\frac{1}{\sin 8192^\circ}=\frac{1}{\sin \alpha}$

$\frac{2\cos8^\circ}{\sin 16^\circ}+\frac{2\cos16^\circ}{\sin 32^\circ}+\frac{2\cos32^\circ}{\sin 64^\circ}+....+\frac{2\cos4096^\circ}{\sin 8192^\circ}+\frac{1}{\sin 8192^\circ}=\frac{1}{\sin \alpha}$

$\frac{2^2\cos8^\circ\cos16^\circ}{\sin 32^\circ}+\frac{2^2\cos16^\circ\cos32^\circ}{\sin 64^\circ}+\frac{2^2\cos32^\circ\cos64^\circ}{\sin 128^\circ}+....+\frac{2\cos4096^\circ}{\sin 8192^\circ}+\frac{1}{\sin 8192^\circ}=\frac{1}{\sin \alpha}$

¿De este modo que esta serie es conseguir complicada en cada etapa, hay alguna forma de simplificarlo? Por favor, ayúdame. Gracias.

12voto

Farkhod Gaziev Puntos 6

SUGERENCIA:

$\sin A\ne0\iff A\ne m\pi$ $m$ Dónde está cualquier número entero,

$$\cot A-\cot2A=\dfrac{\sin(2A-A)}{\sin2A\sin A}=\csc2A$$

¿Reconoces la Serie telescópica?

5voto

Anthony Shaw Puntos 858

Esta es la misma idea como en respuesta de laboratorio bhattacharjee, pero usando la identidad de la Sustitución de Weierstrass $$ \tan(x/2)=\frac{\sin(x)}{1+\cos(x)} $$ obtenemos $$\begin{align} \frac1{\tan(x/2)}-\frac1{\tan(x)} &=\frac{1+\cos(x)}{\sin(x)}-\frac{\cos(x)}{\sin(x)}\\ &=\frac1{\sin(x)} \end {Alinee el} $$ el resto es el mismo telescópico serie $$\begin{align} \sum_{k=0}^n\frac1{\sin\left(2^kx\right)} &=\sum_{k=0}^n\left[\frac1{\tan\left(2^{k-1}x\right)}-\frac1{\tan\left(2^kx\right)}\right]\\ &=\frac1{\tan(x/2)}-\frac1{\tan\left(2^nx\right)} \end {Alinee el} $$ la pregunta tiene $x=8^\circ$ y $n=10$, así que conseguir $$\begin{align} \sum_{k=0}^{10}\frac1{\sin\left(2^k8^\circ\right)} &=\frac1{\tan(4^\circ)}-\frac1{\tan(8192^\circ)}\\ &=\frac1{\tan(4^\circ)}+\frac1{\tan(88^\circ)}\\ &=\frac1{\tan(4^\circ)}+\tan(2^\circ)\\ &=\frac{\cos(4^\circ)}{\sin(4^\circ)}+\frac{\sin(4^\circ)}{1+\cos(4^\circ)}\\ &=\frac{\cos(4^\circ)}{\sin(4^\circ)}+\frac{1-\cos(4^\circ)}{\sin(4^\circ)}\\ &=\frac1{\sin(4^\circ)} \end {Alinee el} $$

i-Ciencias.com

I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.

Powered by:

X