Necesito calcular: $\displaystyle\lim_{n\rightarrow \infty }\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}}{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots+\frac{1}{2n+1}}$.
Mi Intento: $\displaystyle\lim_{n\rightarrow \infty }\frac{1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\cdots+\frac{1}{n}}{1+\frac{1}{3}+\frac{1}{5}+\frac{1}{7}+\cdots+\frac{1}{2n+1}}=\lim_{n\rightarrow \infty }\frac{2s}{s}=2$.
Es esto correcto?
Gracias.