Comience con la identidad del triple producto
$$\sum_{n = -\infty}^\infty z^n q^{n^2} = \prod_{n = 1}^\infty (1 - q^{2n})(1 + zq^{2n-1})(1 + z^{-1}q^{2n-1}).$$
- Sustituir el $q$ $q^2$, luego del ajuste del $z = q$, obtenemos
\begin{align}
\sum_{n = -\infty}^\infty q^{2n^2+n} &= \prod_{n = 1}^\infty (1 - q^{4n})(1 + q^{4n-1})(1 + q^{4n-3})\\
& = \prod_{n = 1}^\infty (1 - q^{4n})(1 + q^{2n-1})\\
& = \prod_{n = 1}^\infty (1 - q^{2n})(1 + q^{2n})(1 + q^{2n-1})\\
& = \prod_{n = 1}^\infty (1 - q^{2n})(1 + q^n)\\
& = \prod_{n = 1}^\infty \frac{(1 - q^{2n})^2}{1 - q^n}.
\end {Alinee el}
- Ajuste $z = 1$, obtenemos
\begin{align}\sum_{n = -\infty}^\infty q^{n^2} &= \prod_{n = 1}^\infty (1 - q^{2n})(1 + q^{2n-1})(1 + q^{2n-1})\\
&= \prod_{n = 1}^\infty (1 - (-q)^n)\prod_{n\, \text{odd}}^\infty (1 + q^n)\\
&= \prod_{n = 1}^\infty (1 - (-q)^n)\prod_{n = 1}^\infty \frac{1 + q^n}{1 + q^{2n}}\\
&= \prod_{n = 1}^\infty (1 - (-q)^n)\prod_{n = 1}^\infty \frac{1 - q^{2n}}{(1 - q^n)(1 + q^{2n})}\\
&= \prod_{n = 1}^\infty (1 - (-q)^n)\prod_{n = 1}^\infty \frac{1 - q^{2n}}{(1 - q^{2n})(1 - q^{2n-1})(1 + q^{2n})}\\
&= \prod_{n = 1}^\infty \frac{1 - (-q)^n}{(1 - q^{2n-1})(1 + q^{2n})}\\
&= \prod_{n = 1}^\infty \frac{1 - (-q)^n}{1 + (-q)^n}.
\end {Alinee el}
- Ajuste de resultados de $z = q$
\begin{align}\sum_{n = -\infty}^\infty q^{n^2 + n} &= \prod_{n = 1}^\infty (1 - q^{2n})(1 + q^{2n})(1 + q^{2n-2})\\
& = \prod_{n = 1}^\infty (1 - q^{4n})\prod_{n = 2}^\infty (1 + q^{2n-2})\\
& = \prod_{n = 1}^\infty (1 - q^{4n}) \prod_{n = 1}^\infty (1 + q^{2n})\\
& = \prod_{n = 1}^\infty (1 - q^{4n}) \prod_{n = 1}^\infty \frac{1 - q^{4n}}{1 - q^{2n}}\\
& = \prod_{n = 1}^\infty (1 - q^{4n}) \prod_{n = 1}^\infty \frac{1 - q^{4n}}{(1 - q^{4n})(1 - q^{4n-2})}\\
&= \prod_{n = 1}^\infty \frac{1 - q^{4n}}{1 - q^{4n-2}}.
\end {Alinee el}