En lugar de ello, vamos a utilizar la inducción y (iterada) integración por partes. (Tenga en cuenta que no debe ser un "{}+C " en esa fórmula, pero no me voy a preocupar de eso.)
En primer lugar, vamos a tomar ninguna n\ge 1 e integrar a \int x^n\sin x\,dx por partes a ver qué pasa. Por el LIATE Regla, debemos tomar las u_1=x^ndv_1=\sin x\,dx, dándonos du_1=nx^{n-1}\,dxv_1=-\cos x. Entonces \int x^n\sin x\,dx=\int u_1\,dv_1=u_1v_1-\int v_1\,du_1=-x^n\cos x+n\int x^{n-1}\cos x\,dx. The integral on the far right is easy when n=1, but if n\ge 2 then it's only slightly less problematic than the integral we started with. Still, it's an improvement, so we'll bear it in mind: \int x^n\sin x\,dx=-x^n\cos x+n\int x^{n-1}\cos x\,dx\quad\quad\text{for }n\ge 1.\tag{1} Now let's suppose n\geq 2, and integrate \int x^{n-1}\cos x\, dx by parts. Take u_2=x^{n-1} and dv_2=\cos x\,dx, so du_2=(n-1)x^{n-2}\, dx and v_2=\sin x. Then \int x^{n-1}\cos x\,dx=\int u_2\,dv_2=u_2v_2-\int v_2\,du_2=x^{n-1}\sin x-(n-1)\int x^{n-2}\sin x\,dx, so by (1), we have \begin{align}\int x^n\sin x\, dx &= -x^n\cos x+n\int x^{n-1}\cos x\,dx\\ &= -x^n\cos x+nx^{n-1}\sin x-n(n-1)\int x^{n-2}\sin x\,dx.\end{align} Hence, we've rewritten the original integral in terms of polynomial combinations of \el pecado x and \cos x, together with an integer multiple of an integral much like the one we started with, but with a power of x that is 2 smaller. This will allow us to make an inductive argument, but with jumps of 2, so we'll need 2 base cases instead of 1. Namely, we'll need base cases n=1,2, and we'll induce along the odd n and the even n separately. Let's bear it in mind: \int x^n\sin x\, dx=-x^n\cos x+nx^{n-1}\sin x-n(n-1)\int x^{n-2}\sin x\,dx\quad\text{for }n\ge 2.\tag{2}
Para el n=1 de los casos, simplemente podemos utilizar (1) para obtener \int x\sin x\,dx=-x\cos x+\int\cos x\,dx=-x\cos x+\sin x. On the other hand, the following 4 las líneas son todos iguales:
\sum_{k=0}^{\lfloor{1/2}\rfloor}(-1)^{k+1}x^{1-2k}{1!\over(1-2k)!}\cos x+\sum_{k=0}^{\lfloor{(1-1)/2}\rfloor}(-1)^kx^{1-2k-1}{1!\over(1-2k-1)!}\sin x
\sum_{k=0}^0(-1)^{k+1}x^{1-2k}{1\over(1-2k)!}\cos x+\sum_{k=0}^0(-1)^kx^{-2k}{1\over(-2k)!}\sin x
(-1)^{0+1}x^{1-0}{1\over(1-0)!}\cos x+(-1)^0x^{0}{1\over(0)!}\sin x -x\cos x+\sin x, así que estamos bien en el primer caso base.
Para el n=2 de los casos, se puede igualmente utilizar (2) y calcular las sumas de forma explícita para confirmar que la fórmula se mantiene.
Ahora, vamos a hacer el impar de inducción. Estamos considerando a todos n=2m-1 (m\in\Bbb N). Vamos a sustituir en la fórmula deseada para conseguir lo que estamos tratando de demostrar que en términos de m, en su lugar. La observación de que ese \lfloor\frac{n}2\rfloor=\lfloor m-\frac12\rfloor=m-1 \lfloor\frac{n-1}2\rfloor=\lfloor m-1\rfloor=m-1, queremos mostrar que \begin{align}\int x^{2m-1}\sin x\,dx=\sum_{k=0}^{m-1}(-1)^{k+1}x^{2m-1-2k}{(2m-1)!\over(2m-1-2k)!}\cos x\\+\sum_{k=0}^{m-1}(-1)^kx^{2m-2-2k}{(2m-1)!\over(2m-2-2k)!}\sin x\end{align}\tag{3} for all m\in\Bbb, N. We already know the formula holds in the m=1 (n=1) case, and by (2), we have \begin{align}\int x^{2(m+1)-1}\sin x\, dx=-x^{2(m+1)-1}\cos x+\bigl(2(m+1)-1\bigr)x^{2(m+1)-2}\sin x\\-\bigl(2(m+1)-1\bigr)\bigl(2(m+1)-2\bigr)\int x^{2m-1}\sin x\,dx\end{align}\tag{4} for all m\geq 1.
Supongamos que para algunos m que (3) mantiene. Tenga en cuenta que para cualquier función de f(x),\sum\limits_{k=0}^{m-1}f(k)=\sum\limits_{k=1}^mf(k-1). El uso de esta nueva indexación de truco, tenemos por (3) que \begin{align}\int x^{2m-1}\sin x\,dx &=\sum_{k=0}^{m-1}(-1)^{k+1}x^{2m-1-2k}{(2m-1)!\over(2m-1-2k)!}\cos x\\ &{}\qquad+\sum_{k=0}^{m-1}(-1)^kx^{2m-2-2k}{(2m-1)!\over(2m-2-2k)!}\sin x\\ &=\sum_{k=1}^{m}(-1)^{(k-1)+1}x^{2m-1-2(k-1)}{(2m-1)!\over(2m-1-2(k-1))!}\cos x\\ &{}\qquad+\sum_{k=1}^{m}(-1)^{k-1}x^{2m-2-2(k-1)}{(2m-1)!\over(2m-2-2(k-1))!}\sin x\\ &=(-1)^{-1}\sum_{k=1}^{m}(-1)^{k+1}x^{2m+1-2k}{(2m-1)!\over(2m+1-2k))!}\cos x\\ &{}\qquad+(-1)^{-1}\sum_{k=1}^{m}(-1)^{k}x^{2m-2k}{(2m-1)!\over(2m-2k)!}\sin x\\ &=-\sum_{k=1}^{(m+1)-1}(-1)^{k+1}x^{2(m+1)-1-2k}{(2(m+1)-3)!\over(2(m+1)-1-2k))!}\cos x\\ &{}\qquad-\sum_{k=1}^{(m+1)-1}(-1)^{k}x^{2(m+1)-2k}{(2(m+1)-3)!\over(2(m+1)-2-2k)!}\sin x,\end{align} and so \begin{align}-\bigl(2(m+1)-1\bigr)\bigl(2(m+1)-2\bigr)\int x^{2m-1}\sin x\,dx =\sum_{k=1}^{(m+1)-1}(-1)^{k+1}x^{2(m+1)-1-2k}{(2(m+1)-1)!\over(2(m+1)-1-2k))!}\cos x\\ {}\qquad+\sum_{k=1}^{(m+1)-1}(-1)^{k}x^{2(m+1)-2k}{(2(m+1)-1)!\over(2(m+1)-2-2k)!}\sin x.\end{align} Thus, since -x^{2(m+1)-1}\cos x=(-1)^{0+1}x^{2(m+1)-1-0}{(2(m+1)-1)!\over(2(m+1)-1-0)!}\cos x and (2(m+1)-1)x^{2(m+1)-2}\sin x=(-1)^{0}x^{2(m+1)-2-0}{(2(m+1)-1)!\over(2(m+1)-2-0)!}\sin x, we have by (4) and the above work that \begin{align}\int x^{2(m+1)-1}\sin x\,dx=\sum_{k=0}^{(m+1)-1}(-1)^{k+1}x^{2(m+1)-1-2k}{(2(m+1)-1)!\over(2(m+1)-1-2k)!}\cos x\\+\sum_{k=0}^{(m+1)-1}(-1)^kx^{2(m+1)-2-2k}{(2(m+1)-1)!\over(2(m+1)-2-2k)!}\sin x,\end{align} and so the desired formula holds in the m+1 caso, también.
La inducción, vamos a proceder de una manera similar a la extraña inducción, excepto que vamos a estar considerando la posibilidad de n=2mm\in\Bbb N.