Ampliando la respuesta por @Mark_Bennet, tenemos la serie de Maclaurin para $\ln(x)$ como sigue: $$-\ln(1-x)=\sum_{n=1}^\infty\frac{x^n}{n},\quad |x|<1$$
And since $\ln(3)=-\ln(1-\frac{2}{3})$, we get
$$\ln(3)=\sum_{n=1}^\infty\frac{(2/3)^n}{n}$$
Accelerating Convergence
But, as @J... points out, this is a pretty slowly converging series. In fact, it takes $17$ terms for only $3$ decimal places. So we'd want to accelerate the convergence of the series. One thing we can do is group together pairs of terms as follows:
$$\begin{aligned}\ln(3)&=\left(\frac{2}{3}+\frac{2^2}{2\cdot3^2}\right)+\left(\frac{2^3}{3\cdot3^3}+\frac{2^4}{4\cdot3^4}\right)+\ldots\\
&=\frac{2}{3}\left(\frac{5-1}{3(2-1)}\right)+\frac{2^3}{3^3}\left(\frac{5\cdot2-1}{3\cdot2(2\cdot2-1)}\right)+\frac{2^5}{3^5}\left(\frac{5\cdot3-1}{3\cdot3(2\cdot3-1)}\right)+\ldots\\
&=\sum_{n=1}^\infty\left(\frac{2}{3}\right)^{2n-1}\frac{5n-1}{3n(2n-1)}\\
&=\frac{1}{2}\sum_{n=1}^\infty\left(\frac{2}{3}\right)^{2n}\frac{5n-1}{n(2n-1)}
\end{aligned}$$
This series gives us $3$ decimal places in only $9$ terms, so it's a bit quicker than before. But we can go further: let's label each partial sum up to $N$ as $S_N$ and examine the ratio-of-differences between $S_N$.
$$\begin{array}{|c|c|c|}
\hline
N & S_N & \frac{S_N-S_{N-1}}{S_{N-1}-S_{N-2}}\\
\hline
1 & 0.888\,889& - \\
\hline
2 & 1.037\,037& 0.167\\
\hline
3 & 1.078\,006& 0.277\\
\hline
4 & 1.091\,245& 0.323\\
\hline
5 & 1.095\,869& 0.349\\
\hline
6 & 1.097\,562& 0.366\\
\hline
\end{array}$$
Looking at the column on the right, the ratio of differences is approaching a value about $0.4$. In fact, this trend continues for at least the next $40$ terms (but we wouldn't know that if we were really doing this by hand so shhh!). The ratio-of-differences in first series I gave is also fairly constant, at around $0.6$.
So, let's say $\frac{S_N-S_{N-1}}{S_{N-1}-S_{N-2}}\approx0.4$. With a bit of algebra, we can see: $$\lim_{N\to\infty}S_N\approx S_N+\frac{0.4}{1-0.4}(S_N-S_{N-1})$$
Conclusion
This extrapolation gives us about $1$ more decimal place. So we have the approximation: $$\ln(3)\approx\left[\frac{1}{2}\sum_{n=1}^N\left(\frac{2}{3}\right)^{2n}\frac{5n-1}{n(2n-1)}\right]+\frac{1}{3}\left(\frac{2}{3}\right)^{2N}\frac{5N-1}{N(2N-1)}$$
When we compute this for each $N$ and simplify, we get the sequence of approximations:
$$\begin{array}{|c|c|l|}
\hline
N & \text{Approximation}, X & \text{Error}= \ln(3)-X\\
\hline
1 & ^{40}/_{27}& -0.383 \\
\hline
2 & ^{92}/_{81} & -0.037\\
\hline
3 & ^{7\,252}/_{6\,561} & -0.006\,707\\
\hline
4 & ^{757\,844}/_{688\,905} & -0.001\,458\\
\hline
5 & ^{20\,440\,988}/_{18\,600\,435} & -0.000\,340\\
\hline
\end{array}$$
We can see we're down to needing just $5$ terms to get $3$ decimal places, which is quite an improvement from $17$.
Some of the fractions are way too complicated before simplification. E.g. for $N=2$, each of the numerator has $8$ digits, then at $N=5$, it has $26$ digits. It would be pretty trivial to find the $\gcd$ para cada caso y simplificar, pero no puedo imaginar lo aburrido que sería.
Para resumir, creo que esta es una aproximación decente y bien dentro de las atribuciones de alguien haciendo con la mano (siempre y cuando estén lo suficientemente paciente!). Si alguien ve un error que he hecho o tiene mejores técnicas para la convergencia de aceleración, por favor siéntase libre de dejar un comentario.
Aquí está el python3 código que he usado para calcular los términos.
def a(n): #numerator in series
if n==1: return 16
else: return 2**(2*n)*(5*n-1)
def b(n): #denominator in series
if n==1: return 9
else: return 3**(2*n)*n*(2*n-1)
def X(N): #partial sum and extrapolation (for N>1)
A=a(1)
B=b(1)
for n in range(2,N+1): #partial sum up to N (ignores 1/2 term)
A=b(n)*A+a(n)*B
B=B*b(n)
C=A*3*b(N)+2*B*a(N) #extrapolation and incorporation of 1/2 and 1/3 terms
D=2*B*3*b(N)
return (C,D)