$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\ceil}[1]{\,\left\lceil\, nº 1 \,\right\rceil\,}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\fermi}{\,{\rm f}}
\newcommand{\piso}[1]{\,\left\lfloor #1 \right\rfloor\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\iff}{\Longleftrightarrow}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\pp}{{\cal P}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\sech}{\,{\rm sech}}
\newcommand{\sgn}{\,{\rm sgn}}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{{1 \over 2\ic}\,\pp\int_{-\infty}^{\infty}
{s\sin\pars{sr} \over \pars{s - k}\pars{s + k}}\,\dd s:\ {\large ?}}$.
\begin{align}&\color{#c00000}{{1 \over 2\ic}\,\pp\int_{-\infty}^{\infty}
{s\sin\pars{sr} \over \pars{s - k}\pars{s + k}}\,\dd s}
={\sgn\pars{r} \over 2\ic}\,\pp\int_{-\infty}^{\infty}
{s\sin\pars{\verts{r}s} \over \pars{s - k}\pars{s + k}}\,\dd s
\\[3mm]&={\sgn\pars{r} \over 4\ic}\,\pp\bracks{%
\int_{-\infty}^{\infty}{\sin\pars{\verts{r}s} \over s + k}\,\dd s
+\int_{-\infty}^{\infty}{\sin\pars{\verts{r}s} \over s - k}\,\dd s}
\\[3mm]&={\sgn\pars{r} \over 4\ic}\,\pp\bracks{%
\int_{-\infty}^{\infty}{\sin\pars{\verts{r}s}\cos\pars{\verts{r}k} \over s}\,\dd s
+\int_{-\infty}^{\infty}{\sin\pars{\verts{r}s}\cos\pars{\verts{r}k} \over s}
\,\dd s}
\\[3mm]&={\sgn\pars{r} \over 2\ic}\,\cos\pars{\verts{r}k}\int_{-\infty}^{\infty}{\sin\pars{s} \over s}\,\dd s
={\sgn\pars{r} \over 2\ic}\,\cos\pars{\verts{r}k}\,\pi
\end{align}
$$
\color{#66f}{\large{1 \over 2\ic}\,\pp\int_{-\infty}^{\infty}
{s\sin\pars{sr} \over \pars{s - k}\pars{s + k}}\,\dd s
={\pi \más de 2\ic}\,\sgn\pars{r}\cos\pars{r\,k}}
$$