Tengo este problema: $$\int \frac{-2x^2+6x+8}{x^4-4x+3}dx$$ He intentado usar fracciones parciales, pero no puedo obtener la solución. Gracias por cualquier consejo.
Respuestas
¿Demasiados anuncios?Una verificación rápida de la muestra que $x = 1$ es una raíz de $x^4 - 4x + 3$. Por división sintética nos encontramos con $x^4 - 4x + 3 = (x - 1)(x^3 + x^2 + x - 3)$. Por un razonamiento similar, $x^3 + x^2 + x - 3 = (x - 1)(x^2 + 2x + 3)$. Por lo $x^4 - 4x + 3 = (x - 1)^2(x^2 + 2x + 3)$. Ahora usted tiene el programa de instalación haga parcial fracción de descomposición. El resultado es
$$\frac{-2x^2 + 6x + 8}{x^4 - 4x + 3} = \frac{2}{(x - 1)^2} - \frac{1}{x - 1} + \frac{x - 1}{x^2 + 2x + 3}.$$
Así
\begin{align} \int \frac{-2x^2 + 6x + 8}{x^4 - 4x + 3}\, dx &= \int \frac{2\, dx}{(x - 1)^2} - \int \frac{dx}{x - 1} + \int \frac{x - 1}{x^2 + 2x + 3}\, dx\\ &= -\frac{2}{x - 1} - \ln|x - 1| + \int \frac{x - 1}{(x + 1)^2 + 2}\, dx\\ &= -\frac{2}{x - 1} - \ln|x - 1| + \int \frac{u - 2}{u^2 + 2}\, du \quad (u = x + 1)\\ &= - \frac{2}{x - 1} - \ln|x - 1| + \int \frac{u}{u^2 + 2} - \int \frac{2}{u^2 + 2}\, du\\ &= -\frac{2}{x - 1} - \ln|x - 1| + \frac{1}{2}\ln|u^2 + 2| - \frac{2}{\sqrt{2}}\arctan \frac{u}{\sqrt{2}} + C\\ &= -\frac{2}{x - 1} - \ln|x - 1| + \frac{1}{2}\ln[(x + 1)^2 + 2] - \sqrt{2}\arctan \frac{x+1}{\sqrt{2}} + C. \end{align}
Como puede verse, $x=1$ es una raíz del denominador, y por lo tanto, puede ser dividido por $(x-1)$. Usando la división larga, llegamos $(x-1)(x^3+x^2+x-3)$
De nuevo, podemos ver que $x=1$ es una solución, el segundo factor, por lo que, usando la división larga de nuevo, obtenemos $(x-1)^2(x^2+2x+3)$
$$\frac{-2x^2+6x+8}{(x-1)^2(x^2+2x+3)}=\frac{A}{x-1}+\frac{B}{(x-1)^2}+\frac{Ex+F}{(x^2+2x+3)}$$
Por lo tanto, hemos
$$-2x^2+6x+8=A(x-1)(x^2+2x+3)+B(x^2+2x+3)+(Ex+F)(x-1)^2$$
$$-2x^2+6x+8=A(x^3+2x^2+3x-x^2-2x-3)+Bx^2+2Bx+3B+(Ex+F)(x^2-2x+1)$$
Por la identificación, nos encontramos con
$A=-1$, $B=2$ $E=1$ $F=-1$
$$\int \frac{-1}{x-1}\,dx =-\ln(x-1)$$
$$\int \frac{2}{(x-1)^2} \,dx =\int 2(x-1)^{-2} =-2(x-1)^{-1}\,dx$$
$$\int \frac{x-1}{x^2+2x+3}\,dx=\int \frac{x+1}{x^2+2x+3}\,dx -2\int \frac{1}{x^2+2x+3}\,dx =\frac{1}{2}\ln(x^2+2x+3)-2\int \frac{1}{2+(x+1)^2} \,dx =\frac{1}{2}\ln(x^2+2x+3)-\int \frac{1}{1+(\frac{x+1}{\sqrt{2}})^2} \,dx =\frac{1}{2}\ln(x^2+2x+3)-\sqrt{2}\arctan \frac{x+1}{\sqrt{2}}$$
No estoy seguro si he hecho algún error, ya que es muy tarde y estoy muerto de cansancio, pero espero que esto consigue el punto.
$x=1$ es una doble raíz de $x^4-4x+3$ (también es una raíz de la derivada), por lo tanto es divisible por $(x-1)^2$, por lo tanto, usted obtendrá $x^4-4x+3=(x-1)^2(x^2+ax+b)$, y parcial de las fracciones de descomposición tiene la forma: $$\frac{-2x^2+6x+8}{x^4-4x+3}=\frac A{x-1}+\frac B{(x-1)^2}+\frac{Cx+D}{x^2+ax+b}.$$
Usted obtendrá $A\ln\lvert x-1\rvert-\dfrac B{x-1} +C'\ln \lvert x^2+ax+b\rvert+D'\arctan(\text{something})$.