Haciendo la transformación $x \mapsto x/n$, vemos $$C_n = n \int^1_{\tfrac n {n+1}} \frac{\arctan x}{ \arcsin x} dx.$$ From here, put $$f(t) = \int_t^1 \frac{\arctan x}{ \arcsin x} dx.$$ Expanding in a Taylor series, we see that for $t$ near $1$, we have $$f(t) = f(1) + (t-1)f'(1) + \mathcal O((t-1)^2).$$ But $f(1) = 0$ and $$f'(t)= - \frac{\arctan(t)}{\arcsin(t)} \,\,\, \implies \,\,\, f'(1) = -\frac{\pi/4}{\pi / 2} = -\frac 1 2$$ so for very large $n $, we have $$C_n = n f\left( \tfrac n {n+1} \right) = n \cdot \tfrac 1 2 \left(1-\tfrac n {n+1} \right) + n \mathcal O \left( \left( 1-\tfrac n {n+1} \right)^2 \right). $$ Finally, $1 - \tfrac n {n+1} = \tfrac 1 {n+1} $ so we get $$C_n = \frac 1 2\frac n {n+1} + \mathcal O \left( \frac 1 n\right) $$ so $% $ $\lim_{n\to\infty} C_n = \frac 1 2. $