$\newcommand{\bbx}[1]{\,\bbox[8px,border:1px groove armada]{\displaystyle{#1}}\,}
\newcommand{\llaves}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\int_{0}^{1}{\ln^{k}\pars{x} \over x}\ln\pars{1 - \root[\large n]{x}}\,\dd x &
\,\,\,\stackrel{\root[\large n]{x}\ \mapsto\ x}{=}\,\,\,
n^{k + 1}\int_{0}^{1}{\ln\pars{1 - x} \over x}\,\ln^{k}\pars{x}\,\dd x
\\[5mm] & =
-n^{k + 1}\int_{0}^{1}\mrm{Li}_{2}'\pars{x}\ln^{k}\pars{x}\,\dd x
\label{1}\tag{1}
\end{align}
Tenga en cuenta que
\begin{align}
&\left.\int_{0}^{1}\mrm{Li}_{s}'\pars{x}\ln^{\ell}\pars{x}\,\dd x\,
\right\vert_{\ \ell\ >\ 0} =
-\ell\int_{0}^{1}\mrm{Li}_{s + 1}'\pars{x}\ln^{\ell - 1}\pars{x}\,\dd x
\\[5mm] = &\
\ell\pars{\ell - 1}\int_{0}^{1}\mrm{Li}_{s + 2}'\pars{x}
\ln^{\ell - 2}\pars{x}\,\dd x = \cdots =
\pars{-1}^{\ell}\ell\pars{\ell - 1}\cdots 1
\int_{0}^{1}\mrm{Li}_{s + \ell}'\pars{x}\,\dd x
\\[5mm] = &\
\pars{-1}^{\ell}\,\ell!\,\,\mrm{Li}_{s + \ell}\pars{1} =
\bbx{\pars{-1}^{\ell}\,\ell!\,\zeta\pars{s + \ell}}
\end{align}
La expresión \eqref{1} se convierte en
$$
\int_{0}^{1}{\ln^{k}\pars{x} \over x}\ln\pars{1 - \root[\gran n]{x}}\,\dd x =
-n^{k + 1}\bracks{\pars{-1}^{k}\,k!\,\zeta\pars{2 + k}} =
\bbx{\pars{-n}^{k + 1}\,k!\,\zeta\pars{k + 2}}
$$