Cómo podemos demostrar:
$$\int_0^1\frac{\log^2(x)\log(1-x)\log(1+x)}{x}dx=\frac{\pi^2}{8}\zeta(3)-\frac{27}{16}\zeta(5) $$
Cómo podemos demostrar:
$$\int_0^1\frac{\log^2(x)\log(1-x)\log(1+x)}{x}dx=\frac{\pi^2}{8}\zeta(3)-\frac{27}{16}\zeta(5) $$
La realización de la integración por partes tomando $u=\ln(1-x)\ln(1+x)$, luego $$\begin{align} \int_0^1\frac{\ln^2x\ln(1-x)\ln(1+x)}{x}\ dx&=\frac{1}{3}\bigg[\int_0^1\frac{\ln(1+x)\ln^3x}{1-x}\ dx-\int_0^1\frac{\ln(1-x)\ln^3x}{1+x}\ dx\bigg]\\ &=\frac{1}{3}\bigg[I-J\bigg]\\ \end{align}$$ Evaluación de $I$ : $$\begin{align} I&=\int_0^1\frac{\ln^3{x}\big[\ln(1-x^2)-\ln(1-x)\big]}{1-x}\,dx\\ &=\int_0^1\frac{(1+x)\ln^3{x}\ln(1-x^2)}{(1+x)(1-x)}\,dx-\int_0^1\frac{\ln^3{x}\ln(1-x)}{1-x}\,dx\\ &=\int_0^1\frac{\ln^3{x}\ln(1-x^2)}{1-x^2}\,dx+\int_0^1\frac{x\ln^3{x}\ln(1-x^2)}{1-x^2}\,dx-\int_0^1\frac{\ln^3{x}\ln(1-x)}{1-x}\,dx\\ &=\frac{1}{16}\int_0^1\frac{x^{-\frac{1}{2}}\ln^3{x}\ln(1-x)}{1-x}\,dx-\frac{15}{16}\int_0^1\frac{\ln^3{x}\ln(1-x)}{1-x}\,dx\\ &=\frac{1}{16}\int_0^1\frac{x^{-\frac{1}{2}}\ln^3{x}\ln(1-x)}{1-x}\,dx-\frac{15}{16}\int_0^1\frac{\ln^3{x}\ln(1-x)}{1-x}\,dx\\ &=\frac{1}{16}\lim_{\mu \to \frac{1}{2}\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\int_0^1 x^{\mu-1}(1-x)^{\nu-1}\,dx-\frac{15}{16}\lim_{\mu \to 1\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\int_0^1 x^{\mu-1}(1-x)^{\nu-1}\,dx\\ &=\frac{1}{16}\lim_{\mu \to \frac{1}{2}\,,\, \nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\text{B}(\mu,\nu)-\frac{15}{16}\lim_{\mu \to 1\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\text{B}(\mu,\nu)\\ &=12\zeta(5)-\frac{3\pi^2}{8}\zeta(3)-\frac{\pi^4}{8}\ln{2} \end{align}$$ Evaluación de $J$ : \begin{align} J&=\int_0^1\frac{\ln^3{x}\big[\ln(1-x^2)-\ln(1+x)\big]}{1+x}\,dx\\ &=\int_0^1\frac{(1-x)\ln^3{x}\ln(1-x^2)}{(1-x)(1+x)}\,dx-\int_0^1\frac{\ln^3{x}\ln(1+x)}{1+x}\,dx\\ &=\int_0^1\frac{\ln^3{x}\ln(1-x^2)}{1-x^2}\,dx-\int_0^1\frac{x\ln^3{x}\ln(1-x^2)}{1-x^2}\,dx-K\\ &=-\frac{1}{16}\int_0^1\frac{x^{-\frac{1}{2}}\ln^3{x}\ln(1-x)}{1-x}\,dx+\frac{1}{16}\int_0^1\frac{\ln^3{x}\ln(1-x)}{1-x}\,dx-K\\ &=-\frac{1}{16}\lim_{\mu \to \frac{1}{2}\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\int_0^1 x^{\mu-1}(1-x)^{\nu-1}\,dx+\frac{1}{16}\lim_{\mu \to 1\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\int_0^1 x^{\mu-1}(1-x)^{\nu-1}\,dx-K\\ &=-\frac{1}{16}\lim_{\mu \to \frac{1}{2}\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\text{B}(\mu,\nu)+\frac{1}{16}\lim_{\mu \to 1\,,\,\nu \to 0}\frac{\partial^4}{\partial\mu^3\partial\nu}\text{B}(\mu,\nu)-K\\ &=\frac{45}{2}\zeta(5)-\frac{5\pi^2}{4}\zeta(3)-\frac{\pi^4}{8}\ln 2-K \end{align} donde \begin{align} K&=\int_0^1\frac{\ln^3{x}\ln(1+x)}{1+x}\,dx\\ &=\int_0^1\sum_{k=1}^\infty (-1)^{k-1}H_{k}\,x^k\ln^3x\,dx\tag{1}\\ &=\sum_{k=1}^\infty (-1)^{k-1}H_{k}\int_0^1x^k\ln^3x\,dx\\ &=-6\sum_{k=1}^\infty (-1)^{k-1}\frac{H_{k}}{(k+1)^4}\tag{2}\\ &=-6\sum_{k=1}^\infty (-1)^{k-1}\left[\frac{H_{k+1}}{(k+1)^4}-\frac{1}{(k+1)^5}\right]\tag{3}\\ &=6\sum_{k=1}^\infty (-1)^{k-1}\left[\frac{H_{k}}{k^4}-\frac{1}{k^5}\right]\\ &=9\eta(5)-3\zeta(5)-6\eta(2)\zeta(3)\tag{4}\\ &=\frac{87}{16}\zeta(5)-\frac{\pi^2}{2}\zeta(3)\tag{5} \end{align}
Poner esto juntos, vamos a obtener el resultado deseado.
Explicación :
$(1)$ El uso de la generación de la función $\displaystyle\sum_{k=1}^\infty (-1)^{k-1}H_{k}\,x^k=\frac{\ln(1+x)}{1+x}$
$(2)$ El uso de la fórmula de $\displaystyle\int_0^1 x^k \ln^n x\ dx=\frac{(-1)^n n!}{(k+1)^{n+1}}\quad,\ n\in\mathbb{Z}_{n\ge0}$
$(3)$ El uso de la propiedad $\displaystyle H_{k}=H_{k+1}-\frac{1}{k+1}$
$(4)$ El uso de la fórmula de $\displaystyle \sum_{k=1}^\infty (-1)^{k-1}\frac{H_{k}}{k^{2n}}=\frac{(2n+1)\eta(2n+1)}{2}-\sum_{k=0}^{n-1}\eta(2k)\zeta(2n+1-2k)\,,\,n\in\mathbb{Z}_{n\ge1}$
$(5)$ El uso de la propiedad de Dirichlet eta función de $\displaystyle \eta(s)=\sum_{k=1}^\infty\frac{(-1)^{k-1}}{k^s}=\left(1-2^{1-s}\right)\zeta(s)$
I-Ciencias es una comunidad de estudiantes y amantes de la ciencia en la que puedes resolver tus problemas y dudas.
Puedes consultar las preguntas de otros usuarios, hacer tus propias preguntas o resolver las de los demás.