$$ u_{n}=-n+\sum_{k=1}^n e^{\frac{1}{k+n}}$$
$$ u_{n+1}-u_{n}=-1+\exp\left(\frac{1}{2n+2}\right)+\exp\left(\frac{1}{2n+1}\right)-\exp\left(\frac{1}{n+1}\right)=O(1/n^3)$$
Así $ \sum u_{n+1}-u_n$ y $u_n$ convergen.
$ u_{100000} \approx 0.69 $
El límite parece ser $\ln2$