¿Cómo puede la ley de los gases ideales derivados de los siguientes supuestos/observaciones/postulados, y estas solo ?
- Soy capaz de medir la presión, $P$ y el volumen de $V$ para los gases.
- Yo avisos de que si dos sistemas de gases en equilibrio termodinámico, que las cantidades $PV$ para el gas 1 y 2 de gas coinciden.
- Supongo que hay una función de energía $U$.
- La primera y la segunda ley de la termodinámica presionado por axioma, junto con todas las consecuencias, que pueden abstracto derivado de los dos.
- Para una expansión libre de un gas $(\Delta U=\Delta Q=\Delta W=P\Delta V=0)$ me parece que la expresión $PV$ para el gas es la misma antes y después del experimento.
Si yo hubiera postulado $PV=nRT$, entonces me gustaría ver fácilmente que $U(T,V)$ es sólo una función de $T$, y puede derivar todo lo demás, bastante, incluso sin la segunda ley. Aquí sé de la segunda ley, que me da un montón de expresiones y me pregunto si eso es suficiente para identificar la temperatura.
Si no es posible, hay otros experimentos que puedo hacer en mi posición de que iba a hacer el trabajo?
Aquí está una versión más débil de la pregunta:
Puede la ley de los gases ideales se derivan si yo además saber que $U$ es realmente sólo una función de $T$, o incluso que $U(T,V)=C_V T\ $?
Y ¿qué papel tiene el cero de ley de la termodinámica jugar aquí?
La esencia de la cuestión no es necesariamente gas física. Es más bien acerca de cómo la temperatura se define por las leyes de la Termodinámica, si no es más que la suposición de que el sistema puede ser descrito por la energía interna $U$ y experimentalmente accesible sólo por sus parámetros como $P,V,M,H,\dots$. Y no hay conexión a una teoría de la mentira de arriba.