$\newcommand{\ángulos}[1]{\left\langle\, nº 1 \,\right\rangle}
\newcommand{\llaves}[1]{\left\lbrace\, nº 1 \,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\, nº 1 \,\right\rbrack}
\newcommand{\dd}{{\rm d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\dsc}[1]{\displaystyle{\color{red}{#1}}}
\newcommand{\expo}[1]{\,{\rm e}^{#1}\,}
\newcommand{\mitad}{{1 \over 2}}
\newcommand{\ic}{{\rm i}}
\newcommand{\imp}{\Longrightarrow}
\newcommand{\Li}[1]{\,{\rm Li}_{#1}}
\newcommand{\pars}[1]{\left (\, nº 1 \,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\parcial #3^{#1}}}
\newcommand{\raíz}[2][]{\,\sqrt[#1]{\vphantom{\large Un}\,#2\,}\,}
\newcommand{\totald}[3][]{\frac{{\rm d}^{#1} #2}{{\rm d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\, nº 1 \,\right\vert}$
$\ds{\int_{-\infty}^{\infty}\frac{\sin^{2}\pars{x}}{x^{2}}\,\expo{\ic x}\,\dd x:
\ {\large ?}}$.
\begin{align}&\color{#66f}{\large%
\int_{-\infty}^{\infty}\frac{\sin^{2}\pars{x}}{x^{2}}\,\expo{\ic x}\,\dd x}
=\int_{-\infty}^{\infty}\expo{\ic x}\,\ \overbrace{%
\pars{\half\int_{-1}^{1}\expo{\ic kx}\,\dd k}}^{\dsc{\frac{\sin\pars{x}}{x}}}
\ \overbrace{%
\pars{\half\int_{-1}^{1}\expo{-\ic qx}\,\dd q}}^{\dsc{\frac{\sin\pars{x}}{x}}}\
\,\dd x
\\[5mm]&=\frac{\pi}{2}\int_{-1}^{1}\int_{-1}^{1}\ \overbrace{%
\int_{-\infty}^{\infty}\expo{\ic\pars{1 + k - q}x}\,\frac{\dd x}{2\pi}}
^{\dsc{\delta\pars{1 + k - q}}}\,\dd q\,\dd k
=\frac{\pi}{2}\int_{-1}^{1}\int_{-1}^{1}\delta\pars{1 + k - q}\,\dd q\,\dd k
\\[5mm]&=\left.\frac{\pi}{2}\int_{-1}^{1}\,\dd k\,
\right\vert_{\, -1\ <\ 1 + k\ <\ 1}
=\left.\frac{\pi}{2}\int_{-1}^{1}\,\dd k\,\right\vert_{\, -2\ <\ k\ <\ 0}
=\frac{\pi}{2}\int_{-1}^{0}\,\dd k=\color{#66f}{\large\frac{\pi}{2}}
\end{align}
Tenga en cuenta que
$\ds{\int_{-1}^{1}\delta\pars{1 + k - q}\,\dd q
=\left\{\begin{array}{lcl}
1 & \mbox{if} & -1 < 1 + k < 1
\\[2mm]
0 && \mbox{otherwise}
\end{array}\right.}$