Vamos a:$a,b,c,d>0$ ser números reales ,cómo probar que :
$$\frac{a^2+b^2+c^2}{a^5+b^5+c^5}+\frac{b^2+c^2+d^2}{b^5+c^5+d^5}+\frac{c^2+d^2+a^2}{c^5+d^5+a^5}+\frac{d^2+a^2+b^2}{d ^5+a^5+b^5}\le\frac{a+b+c+d}{abcd}$$.
Edit : creo que me lo demostró. A partir de la desigualdad de Cauchy tenemos $$ \left(\sum\limits_{cyc}x^5\right)\left(\sum\limits_{cyc}x\right)\geq \left(\sum\limits_{cyc}x^3\right)^2 $$ A partir de la desigualdad de Chebyshev es de la siguiente manera $$ \left(\sum\limits_{cyc}x\right)\left(\sum\limits_{cyc}x^2\right)\leq 3\left(\sum\limits_{cyc}x^3\right)^2 $$ por lo tanto $$ \frac{\left(\sum\limits_{cyc}x^5\right)}{\left(\sum\limits_{cyc}x^2\right)}= \frac{\left(\sum\limits_{cyc}x^5\right)\left(\sum\limits_{cyc}x\right)}{\left(\sum\limits_{cyc}x\right)\left(\sum\limits_{cyc}x^2\right)}\leq \frac{3}{\left(\sum\limits_{cyc}x^3\right)}\leq \frac{1}{xyz} $$ En el último paso he usado AM-GM de la desigualdad. El resto es clara.
Es allí una manera diferente para demostrarlo ?